Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА
Шрифт:
Как только запускается термоядерная реакция, гравитационное сжатие, с которого начинался процесс формирования звезды, прекращается, и возникает устойчивое состояние, связанное с самоподдерживающейся реакцией расходования водорода, где длительность существования звезды зависит от её массы. Для звёзд типа нашего Солнца этот период составляет до 10 млрд лет. Как бы не были велики запасы водорода в звезде, рано или поздно он закончится. Когда генерация энергии падает, тонкий механизм, уравновешивающий силы гравитации и давления излучения, нарушается, тяготение начинает сжимать звезду. При сжатии выделяется огромное количество энергии, которая в свою очередь раздувает звезду. Её оболочка расширяется, и звезда вступает в новую фазу, называемую красным гигантом. При этом размеры звезды, на примере Солнца, могут достигнуть
Солнце – типичная, рядовая звезда не только в нашей Галактике, но и во всей Вселенной, таких звёзд в ней до 70 %. В астрономической классификации она имеет название жёлтый карлик с температурой на поверхности 5,6 тыс. градусов Кельвина. Есть звёзды и меньше Солнца, так называемые красные карлики, и они могут «жить» до 50 млрд лет. Особый интерес представляют коричневые карлики, не так давно открытые астрономами благодаря инфракрасным телескопам. Эти звёзды в несколько десятков раз больше Юпитера, они есть нечто среднее между газовыми планетными гигантами и собственно звёздами. Время их активного энерговыделения невелико, поэтому они обнаруживают себя только в виде инфракрасного излучения. Тем не менее вокруг них могут существовать планетные системы. Согласно одной из гипотез, наше Солнце имеет такого «компаньона», который находится между Солнечной системой и ближайшей к нам звезде Альфа Центавра, до которой 4,2 световых года.
Существуют звёзды гораздо больше Солнца, и даже сверхгиганты, превосходящие его в сотни и тысячи раз. Самая большая из обнаруженных на сегодняшний день звёзд имеет размер величиной с Солнечную систему. Чем массивнее звезда, тем быстрее она расходует водород. Поэтому время жизни гигантских звёзд в среднем составляет 1 млн лет. Финал их эволюции носит совсем другой характер и сопровождается взрывными процессами, приводящими к образованию таких экзотических объектов, как нейтронные звёзды и чёрные дыры.
Сверхновые – закономерный итог жизненного цикла массивных звёзд
Предположим, мы находимся в комнате, слушаем музыку, смотрим телевизор, читаем газету. Внезапно материя вспыхивает, всё вокруг превращается в облако плазмы, включая и всю нашу Землю, температура которой мгновенно достигает десятков тысяч градусов. Со стороны можно бы было увидеть, как часть пространства внезапно засияла ярче всех светил и даже Солнца. Возможно ли такое? Современная астрофизика однозначно утвердительно отвечает на этот вопрос.
Массивные звёзды заканчивают свой жизненный
Согласно классификации, сверхновые делятся на два типа. Они отличаются по месту положения в Галактике, по светимости, механизмам возникновения и другим показателям. Сверхновые I типа, как правило, встречаются в эллиптических галактиках, что означает их принадлежность к более старому поколению звёзд. Они порождаются звёздами, чей возраст достигает миллиардов лет. Масса таких звёзд не может значительно превосходить массу Солнца. Светимость в момент взрыва быстро нарастает и через три недели достигает максимума. При этом звезда может светить как вся Галактика, т. е. в несколько миллиардов солнц.
Сверхновые II типа встречаются исключительно в спиральных рукавах галактик, которые в основном состоят из молодого поколения звёзд. В этом случае они должны быть более массивными, по крайней мере в шесть раз больше сверхновых I типа, и короткоживущими. Светимость таких звёзд приблизительно в пять раз меньше и убывает быстрее [49].
Согласно современным представлениям, сверхновые I типа возникают в системах двойных звёзд. При этом одна из звёзд должна находиться в состоянии белого карлика, являющегося продуктом эволюции звёзд типа Солнца. Сильное гравитационное поле белого карлика может «забирать» вещество со своей звезды-компаньона. В итоге его масса значительно увеличивается, и, если вначале она могла составлять 1,4 массы Солнца, то за счёт переноса вещества может превысить предел, после чего начинается коллапс. В центре из-за гравитационного сжатия резко возрастает температура и плотность, порождая новые циклы термоядерных превращений. Углерод и другие элементы, синтезировавшиеся в результате жизнедеятельности звезды, вступают в термоядерные реакции с образованием ядер тяжёлых атомов. В результате выделяется огромная энергия. Происходит термоядерный взрыв, полностью разрушающий звезду без какого-либо остатка и выбрасывающий продукты термоядерного горения в окружающий космос с большими скоростями.
Наличие энергии длительного свечения объясняется превращением радиоактивного кобальта в никель и железо. Одинаковая светимость сверхновых I типа вызвана тем, что все они порождены схожими механизмами и происходят из белых карликов, превысивших предел устойчивости.
Сверхновые II типа возникают в конечной стадии эволюции звёзд крупнее нашего Солнца, не менее чем в 8 – 10 раз [50]. В результате последовательных сжатий таких массивных звёзд происходит синтез тяжёлых элементов. Так, неон превращается в магний, что сопровождается появлением свободных нейтронов. Они вступают в реакцию с металлами группы железа и создают атомы тяжёлых элементов вплоть до урана. Когда температура превысит 1,5 млрд градусов Кельвина, более вероятными становятся распады ядер. При распаде и соединении ядер при температурах 2–5 млрд К рождаются титан, ванадий, хром, кобальт и другие элементы, но наиболее широко представлено железо. По мнению Хойла, именно возникновение группы железа приводит звезду к драматическому финалу. Ядерные реакции, происходящие в ядре звезды, сопровождаются превращением протонов в нейтроны, а электромагнитное излучение переключается на нейтринное. Нейтрино слабо взаимодействует с материей, эта частица может пройти Галактику насквозь и не вступить в реакцию с её веществом. В этом случае радиационное давление, осуществляемое электромагнитным излучением, уже не противостоит гравитации, и возникает имплозия или взрыв внутрь. Размеры железного ядра за доли секунды сокращаются до нескольких километров. Плотность сравнивается с плотностью атомного ядра. Как только это происходит, коллапс резко останавливается. Гравитационная энергия, выделенная при сжатии, распространяется наружу нейтрино и ударными волнами, срывающими оболочку звезды и разбрасывая её материал по окружающему пространству. После вспышки сверхновой II типа остаётся компактный объект – нейтронная звезда, в миллиард раз более плотный, чем белый карлик.
Конец ознакомительного фрагмента.