Чтение онлайн

на главную - закладки

Жанры

Внутреннее устройство Linux
Шрифт:

Как ядро Linux различает эти два типа назначений? Чтобы выбрать для себя образ действий, оно использует конфигурацию назначений, которая называется таблицей маршрутизации. Чтобы отобразить таблицу маршрутизации, применяйте команду route -n. Вот что вы могли бы увидеть для простого хоста, такого как хост с адресом 10.23.2.4:

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.23.2.1 0.0.0.0 UG 0 0 0 eth0

10.23.2.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0

Две

последние строки здесь содержат информацию о маршрутизации. Столбец Destination сообщает префикс сети, а столбец Genmask — маску, которая соответствует данной сети. В этом выводе определены две сети: 0.0.0.0/0 (которая соответствует каждому адресу в Интернете) и 10.23.2.0/24. У каждой из этих сетей в столбце Flags стоит символ U, который говорит о том, что данный маршрут активен («up»).

Различие между назначениями заложено в комбинации значений столбцов Gateway и Flags. Для адреса 0.0.0.0/0 в столбце Flags указан флаг G, который означает, что для данной сети связь должна проходить через шлюз, указанный в столбце Gateway (в данном случае 10.23.2.1). Однако для сети 10.23.2.0/24 в столбце Flags нет символа G, это говорит о том, что данная сеть подключена напрямую каким-либо способом. Здесь 0.0.0.0 используется в качестве заместителя значения в столбце Gateway. Не обращайте пока внимания на остальные столбцы вывода.

Есть некоторая хитрость: допустим, хост собирается отправить что-либо по адресу 10.23.2.132, который соответствует обоим правилам таблицы маршрутизации, 0.0.0.0/0 и 10.23.2.0/24. Как ядро узнает о том, что необходимо применить второй адрес? Оно выбирает самый длинный совпадающий префикс назначения. Именно здесь нотация CIDR становится чрезвычайно удобной: адрес 10.23.2.0/24 годится, и длина его префикса равна 24 битам; адрес 0.0.0.0/0 тоже подходит, но его префикс — нулевой длины (то есть у него нет префикса), поэтому берет верх правило для адреса 10.23.2.0/24.

примечание

Параметр -n просит команду route отобразить IP-адреса вместо имен хостов и сетей. Следует помнить об этом важном параметре, поскольку вы сможете использовать его в других командах, относящихся к работе с сетью, таких как netstat.

Шлюз по умолчанию. Запись для адреса 0.0.0.0/0 в таблице маршрутизации имеет особое значение, поскольку она соответствует любому адресу в Интернете. Это маршрут по умолчанию, и адрес, который указан в столбце Gateway (в результате вызова команды route -n) для маршрута по умолчанию, является шлюзом по умолчанию. Когда остальные правила не подходят, маршрут по умолчанию всегда годится, а в шлюз по умолчанию отправляются сообщения, если нет другого выбора. Можно настроить хост без шлюза по умолчанию, но он будет неспособен подключиться к тем хостам, назначения которых отсутствуют в таблице маршрутизации.

примечание

В большинстве сетей с маской 255.255.255.0 маршрутизатор обычно расположен по адресу подсети 1 (например, 10.23.2.1 в сети 10.23.2.0/24). Поскольку это просто договоренность, возможны исключения.

9.5. Основные

инструменты, использующие протокол ICMP и службу DNS

Теперь пришло время рассмотреть некоторые основные утилиты, помогающие взаимодействовать с хостами. Эти инструменты используют два протокола, представляющих особый интерес: ICMP (Internet Control Message Protocol, протокол управляющих сообщений в Интернете), который может помочь в искоренении проблем с подключением и маршрутизацией, и систему DNS (Domain Name Service, служба доменных имен), которая сопоставляет имена с IP-адресами, чтобы вам не приходилось запоминать уйму чисел.

9.5.1. Команда ping

Команда ping (см. является одним из главнейших инструментов для сетевой отладки. Она отправляет пакеты эхо-запроса по протоколу ICMP какому-либо хосту-адресату и просит вернуть его отправителю. Если принимающий хост получает пакет и настроен на ответ, он отправляет эхо-ответ по протоколу ICMP.

Допустим, например, что вы запустили команду ping 10.23.2.1 и получили такой результат:

$ ping 10.23.2.1

PING 10.23.2.1 (10.23.2.1) 56(84) bytes of data.

64 bytes from 10.23.2.1: icmp_req=1 ttl=64 time=1.76 ms

64 bytes from 10.23.2.1: icmp_req=2 ttl=64 time=2.35 ms

64 bytes from 10.23.2.1: icmp_req=4 ttl=64 time=1.69 ms

64 bytes from 10.23.2.1: icmp_req=5 ttl=64 time=1.61 ms

Первая строка говорит о том, что вы отправляете пакеты из 56 байт (если учитывать заголовки, то из 84 байтов) по адресу 10.23.2.1 (по умолчанию один пакет в секунду); остальные строки приводят отклик от хоста с адресом 10.23.2.1. Самыми важными частями вывода являются порядковый номер (icmp_req) и время прохождения в прямом и обратном направлениях (time). Количество возвращенных байтов равно размеру отправленного пакета плюс 8. Содержимое пакетов не имеет значения.

Разрывы в порядковых номерах (такие как между 2 и 4) обычно свидетель­ствуют о каких-либо неполадках с подключением. Возможно также, что пакеты будут приходить в неправильном порядке. Если это так, то это тоже говорит о проблеме, так как команда ping отправляет только один пакет в секунду. Если на доставку ответа требуется больше секунды (1000 мс), то подключение является крайне медленным.

Время прохождения — это интервал времени с момента отправки пакета-запроса до момента прибытия пакета-ответа. Если достичь назначения не представляется возможным, конечный маршрутизатор, который видит данный пакет, возвращает команде ping ICMP-пакет host unreachable («хост недоступен»).

В проводной локальной сети следует ожидать полное отсутствие потери пакетов и очень малое значение времени прохождения. Приведенный выше пример взят из беспроводной сети. Следует также ожидать отсутствие потери пакетов и устойчивую величину времени прохождения при передаче между вашей сетью и поставщиком интернет-услуг.

примечание

Из соображений безопасности не все хосты в Интернете отвечают на пакеты эхо-запросов, поэтому вы можете подключиться к какому-либо сайту на хосте, но не получить ответа на команду ping.

Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Подаренная чёрному дракону

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.07
рейтинг книги
Подаренная чёрному дракону

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Сонный лекарь 6

Голд Джон
6. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 6

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила