ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
Радикс опустил свой длинный нос пониже и довольно лукаво посмотрел на Илюшу. Тому после испанской задачки ничего другого не оставалось, как сделать вид, что он этого не замечает.
– Нет, - сказал мальчик, - ты мне все-таки лучше про Бриарея...
– 170 -
– Про Бриарея рассказ будет не очень длинный. Бриарей был, по древнему греческому мифу, одним из детей Урана - неба и Геи - земли, от которых родились титаны, гекатонхойры (что значит сторукие) и одноглазые циклопы. С одним из этих последних встретился Одиссей, как ты, вероятно, знаешь (а не знаешь, так возьми "Одиссею" в переводе Шуковского и узнаешь). Бриарей и был одним из гекатонхейров, которые в мифах олицетворяли грозные силы разбушевавшейся морской стихии. Титаны олицетворяли собой первобытные силы природы в их совокупности, а циклопы - явления небесной грозы: гром, молнию и заодно уж извержения вулканов и землетрясения. Все эти титаны были до того страшны, что собственный
– Значит, - сказал Илюша, - Бриарей был великан?
– В этом роде, - отвечал Радикс.
– Но мы здесь видали и не таких великанов.
– Это ты про Великую Теорему?
– Нет. Есть великаны и попроще, но такого удивительного роста, что невольно диву даешься. Мы с тобой сейчас говорили о мифах. Эти прекрасные, поистине высокопоэтические создания народного гения сохранили нам не только образы древнего искусства, но и замечательные мысли. Возможно, мы снова вспомним нашего сиракузского Бриарея. Люди с давних времен всегда интересовались большими числами. В трудах индийских математиков, поскольку они отразились в легендах и поэмах древней Индии, мы встречаем не просто упоминания о больших числах, но суждения о том, как их строит мысль человеческая, какие числовые громады можно построить, исходя из довольно простых принципов. Так, в одной из древнейших книг Индии рассказывается, каким образом могут быть уложены камни при постройке некоей стереометрической фигуры. Счет начинается с десяти тысяч, затем это число последовательно увеличивается путем умножения его на десять, и девятое число из этого ряда уже довольно велико: десять в двенадцатой степени. Мы теперь называем его триллионом- это миллион миллионов. Чтобы как-нибудь представить себе эту "крошку", вспомним вот о чем. Самая близкая к нам звезда, не принадлежащая к нашей Солнечной системе, называется Альфа Центавра. Ты, наверное, знаешь, что обычно отдельные звезды созвездия называются греческими буквами.
– 171 -
Так вот, Альфа Центавра находится от нас на расстоянии сорока триллионов километров. Свет в одну секунду пролетает триста тысяч километров. В году свыше тридцати миллионов секунд; следовательно, свет этой звезды должен идти к нам примерно четыре с половиной года. Довольно долго, не правда ли? Допустим, что у нас с тобой будет самолет, который летает со скоростью тысяча километров в час.
Для КРУГЛОГО счета будем считать, что в году девять тысяч часов. Тогда за год он пролетит девять миллионов километров, за сто лет – девятьсот миллионов километров, то есть еле приблизится к биллиону. Таким образом, чтобы пролететь триллион километров, нашему самолету придется лететь, не останавливаясь, сто тысяч лет с лишним. Ты видишь, что триллион- это довольно почтенное число.
– Да уж действительно! А скажи, пожалуйста, ведь биллион не редко называют еще миллиардом, так нельзя ли на этом основании назвать триллион биллиардом?
– Нет, такого названия не существует. Ну, слушай дальше. Мысль древнеиндийских математиков и поэтов на этом не остановилась. В поэме Рамаяна описывается воинственный бог Сугрива, который ведет страшное обезьянье войско. Число хвостов в этих ужасающих полчищах начинает исчисляться обезьяньими дивизиями, в каждой из которых ты находишь, ни много ни мало, сто миллионов непобедимых мартышек. Затем эти дивизии объединяются во все более и более крупные соединения, и в конце концов во всей этой бесподобной армии насчитывается 1038 мохнатых богатырей. Что такое 1038 по нашей системе? Если мы назовем с тобой 1033 децильоном, то дальше счет пойдет так:
1033 ....... децильоны
1036 ....... тысячи децильонов
1039 ....... миллионы децильонов
1042 ....... биллионы децильонов
Как видишь, хвостов в распоряжении этого индийского вояки было вполне удовлетворительное количество.
Кстати, скажу тебе вот еще что. В старинных русских рукописях тоже имеются рассуждения о весьма больших числах.
В одной рукописи приводится число, о котором говорится, что "больше сего числа несть человеческому разуму разумети".
– 172 -
Оно именуется "колодой" и равняется 108, то есть сотне миллионов. Однако это еще не всё. В другой рукописи есть указание
– Да-да!
– сказал Илюша.
– Про Архимеда мне все очень интересно.
– Отлично. Дело было в третьем веке до нашей эры. Архимед в этом сочинении, которое написано в форме послания к сиракузскому царю Гелону, идет примерно тем же путем, каким шли индийские математики. Он показывает на очень хорошем примере, что человек в рассуждениях может составить числа, превышающие всякий, даже самый необъятный на первый взгляд пример. Архимедов "Счет песчинок" (так называется это его сочинение) начинается следующими словами: "Некоторые - о царь Гелон!
– думают, что число песчинок бесконечно. Не только тех песчинок, что находятся вблизи Сиракуз и по всей Сицилии, но и всех тех, что рассеяны по всем обитаемым и необитаемым странам земли. Другие полагают, что число это не бесконечно, но невозможно определить словесно количество, которое превышало бы число всех этих песчинок". Архимед утверждает, что мнения эти неправильны, и опровергает их таким образом. Возьмем песчинку и предположим, что в одном маковом зернышке находится 104, или десять тысяч таких песчинок. Не правда ли это будет довольно маленькая песчинка?
– Ясно, - отвечал Илюша, прямо пылинка.
– 173 -
– Далее Архимед говорит, что один палец равен сорока диаметрам макового зернышка, а стадия (греческая мера длины, которая равна примерно ста шестидесяти метрам) меньше десяти тысяч пальцев. Затем он говорит, что если мы возьмем шар с диаметром в одну стадию, то объем его будет меньше, чем объем куба, ребро которого равно одной стадии, что очевидно, ибо такой шар можно вписать в такой куб. Из этого он заключает, что в шаре с диаметром в одну стадию не может заключаться песчинок более нежели 1021, то есть более секстильона. Ясно, что объем этого шара менее, чем 104 кубических пальцев, он меньше, чем 403 • 1012 зернышек мака, а следовательно, меньше, чем 104 • 403 • 1012, или 64 • 1019, песчинок, а стало быть, он меньше, чем секстильон, равный 1021.
Далее он полагает, что если построить шар с диаметром, равным диаметру Солнечной системы, который, как он полагает, меньше 1010 стадий, то объем этого шара будет менее 1030 кубических стадий, а следовательно, в нем будет заключаться менее, чем 1051 песчинок, или, по нашей с тобой системе, менее квинтильона децильонов. Наконец, Архимед строит шар с радиусом, равным расстоянию от Земли до неподвижных звезд, которое, по его мнению, менее десяти тысяч диаметров Солнечной системы, и утверждает, что в таком шаре будет заключаться менее 1063 песчинок, или, по нашим с тобой обозначениям, менее нонильона децильонов. Может быть, тебе эта величина станет немного яснее, если я скажу, что в переводе на современные меры объем этой сферы Архимеда менее нежели 5 • 1054 кубических сантиметров.
Но Архимед не употреблял позиционной системы, как не пользовался он и показателями степени. Он строит для этого рассуждения свою систему чисел, начиная с греческого числа "мириада", которое равно десяти тысячам, то есть 104. Тогда числа до мириады он называет первыми числами, затем идет мириада мириад, или 108, которая будет единицей вторых чисел. Мириада мириад вторых чисел, или 1016, будет единицей третьих чисел, и так далее. И вот теперь оказывается, что для того, чтобы определить, сколько песчинок будет в сфере, радиус которой равен расстоянию от Земли до неподвижных звезд, достаточно взять число, которое будет менее тысячи мириад восьмых чисел Архимеда.