ВОЛШЕБНЫЙ ДВУРОГ
Шрифт:
πr2 = π(R2/H2)• h2
Теперь предположим, что мы делим высоту конуса на n частей.
Тогда высота каждого цилиндрика будет H/n, а последовательные расстояния оснований цилиндриков от вершины конуса, то есть радиусы этих оснований, будут
h, 2h, 3h,... nh.
Поэтому сумма объемов этих цилиндриков равна
π(R2/H2)• H/h (h2 + 22h2 + ... + n2h2) = π R2/H (12 + 22 + ... + n2) / n3
1/3 π R2 H
– 354 -
Множитель 1/3 ты можешь рассматривать как лежащую на этой формуле печать Великого Змия.
– Как интересно!
– сказал Илюша.
– А с объемом шара можно справиться таким способом?
– Я приведу тебе только чертеж, который, по преданию,
Архимед завещал вырезать на своем надгробном памятнике.
Здесь ты видишь цилиндр, вписанный в него шар радиуса R и конус. Разбей все три тела на тонкие "цилиндрические" слои и легко установишь, что на расстоянии h от центра шара площадь поперечного сечения самого шара равна:
π (R2– h2) = π R2– πh2
то есть разности площадей поперечных сечений цилиндра и конуса. Суммируя объемы всех тонких цилиндрических пластинок и переходя к пределу, как мы это делали для конуса, находим, что и объем шара тоже будет равен разности объемов цилиндра и конуса. Этот закон и был открыт Архимедом.
Таким путем можно найти не только объем всего шара, но и объем любого шарового слоя. В формулы войдет опять множитель 1/3, печать Великого Змия, свидетельствующая о том, что здесь приходилось интегрировать функцию, содержащую квадрат переменной (в данном случае - квадрат высоты h).
– Очень хорошо!
– отвечал мальчик.
– А теперь вот еще что. Ты назвал Великого Змия развертывателем спиралей. Что это значит?
– Это значит, что путем интегрирования можно получить длину дуги любой кривой, например параболы, окружности и так далее. В частности, и длину спирали. Мы ведь уже говорили, как находится длина дуги.
– Но я должен сознаться, - вздохнув, сказал Илюша, - что до сих пор не пойму, как при помощи этой спирали получается длина окружности, то есть почти квадратура круга?
– Конечно, история эта необычная, - отвечал Радикс.
– Из-за нее в средние века долго ломали голову над вопросом квадратуры круга и ни к какому разумному заключению не пришли. Совсем запутались. Начали даже поговаривать, что геометрия - наука, может быть, не слишком точная... Вес это довольно сложно.
– 355 -
Могу рассказать лишь о самом принципе этой работы Архимеда. Дело было так. До Византии еще дошла биография Архимеда, написанная его учеником Гераклидом. Затем она была утрачена. Но ее еще читал и изучал византийский математик Евтокий, оставивший очень ценные комментарии к сочинениям Архимеда. По словам Евтокия,
Архимед дал два решения о квадратуре, причем одно из них было приближенным...
– Двадцать две седьмых!
– воскликнул Илья.
– Правильно!
– отвечал Радикс.
– А другое решение Архимеда было точным!
– А разве это возможно?
– Слушай меня как только можешь внимательно! Я расскажу тебе, в чем заключается принцип этой работы Архимеда. А уж потом мы постараемся рассудить, что возможно и что невозможно. Здесь вся сила в том, что Архимед, построив свою спираль, ввел в античную математику еще одну, как говорили греки, "механическую" замечательную кривую, то есть такую, свойства которой не могут быть изложены средствами, близкими к элементарной геометрии (в отличие, например, от многих, хотя и не всех свойств конических сечений). Такова и квадратриса, о которой мы уже говорили (эти кривые называются "трансцендентными" кривыми). В силу этого сочинение Архимеда о спиралях и критиковалось в древности! И даже очень жестоко! Только уж в семнадцатом веке в Европе эта дивная работа Архимеда наконец была оценена по своему превосходному достоинству. Нужны были новые основания, новый подход к пониманию для такой кривой, и гений Архимеда нашел их. Эти новые основания и были дифференциальным подходом к изучению кривой, то есть тонким изучением скорости изменения некоторых связанных с ней отрезков. И делается это опять-таки через ту же касательную.
Этот метод восходит к методу исчерпания Евдокса, но еще сильнее его. Он просто берет, как говорится, быка за рога.
Слушай далее, и ты поймешь, в чем тут дело. Итак, самым главным в работе Архимеда была задача провести касательную к этой новой своеобразной кривой, которую он назвал спиралью. Она, как и квадратриса, построена с помощью двух движений. Первое - это вращение радиуса-вектора (именно так называется тот отрезок прямой, о котором мы уже вспоминали в Схолии Пятнадцатой; его конец чертит нашу спираль), второе - рост этого радиуса-вектора пропорционально углу, на который повернулся вектор. Длина радиуса-вектора и угол его поворота называются полярными координатами точки, являющейся концом радиуса-вектора. Догадываешься, почему эти величины можно называть координатами?
– 356 -
– Кажется, догадываюсь... Я думаю, что с помощью радиуса-вектора, зная его начало, то есть полюс всего этого построения, и зная угол, под которым радиус-вектор находится по отношению к полярной оси, и его длину, можно определить любую точку на плоскости. Вот и выходит, что это координаты!
– Правильно, - подтвердил Радикс, - теперь слушай дальше. Построим с тобой касательную к спирали в заданной точке, причем будем учитывать направление движения спирали, то есть либо от полярной осп против часовой стрелки, либо обратно. Первое из этих направлений мы будем считать положительным...
– Постой!
– прервал его Илюша.
– Например, граммофонная пластинка вращается по часовой стрелке, то есть в отрицательном направлении, а если бы мы поместили наш радиус-вектор в самую середину пластинки да еще заставили бы его обегать пластинку, начиная не с края, как обычно делается, а с серединки (где полагается находиться полюсу полярных координат), то он бы вращался в положительном направлении... Только всю музыку он сыграл бы сзади наперед! Но ведь нам сейчас это неважно. Так я говорю?