Волшебный двурог
Шрифт:
График параболы четвертого порядка.
У этой кривой два максимума и один минимум (или наоборот); она пересекает ось абсцисс дважды…
… или четырежды.
— 335 —
чит, верхняя часть касательной образует с положительным направлением оси абсцисс тупой угол.
— Круглая пятерочка! — воскликнул Радикс. — Отвечай, юноша, что же будет с касательной в точке максимума?
— Не знаю!.. Ах да! Очень просто. Она будет параллельна оси абсцисс. Она ведь скользит по кривой и поворачивается, а в точке максимума станет совершенно горизонтально.
А потом уже повернется в другую сторону.
— А почему она поворачивается?
— Потому что ордината кривой, приближаясь к максимуму, растет все медленнее, а потом, после максимума, сейчас же начинает уменьшаться.
— Молодчага! — сказал Радикс. — Вот тебе и ясно,
— Вот уж не подумаешь сразу, что касательная такая полезная линия! — сказал Илюша. — А греки знали об этом?
— И Архимед и Аполлоний Пергейский, вероятно, понимали это. Но раскрылось в подробностях все гораздо позже.
Теперь припомним, как шло дело дальше. Греческая наука замирает. После падения Рима ей не только не помогают, а с ней борются. Монахи уверяют, что надо жить не рассудком, а верой, и в силу этого добираться до тайн природы грешно. Надо смотреть на природу и удивляться ее могуществу — и все! А затем начетчики Византии — люди начитанные, но плохо
— 336 —
умеющие критиковать свои собственные знания, постепенно договорились до того, что греческие математики и философы были просто говоруны, а не ученые. Этим начетчикам трудно было пользоваться научными завоеваниями Древней Греции: они не знали, что с ними делать. Древние рукописи еще переписывались, по на этом дело, по-видимому, и кончалось. Затем у арабов все как бы начинается заново. Они изучают древних греков, а также первоначальную алгебру Индии. Арабы понемногу продвигаются вперед в том деле, которое начал Архимед. Если Архимед сумел вычислить площадь параболы, то один из арабских ученых, математик и астроном Ибн-Альхайтам, живший в начале одиннадцатого века нашей эры, нашел площадь кубической параболы и параболы четвертого порядка, с которой ты немного знаком по биквадратным уравнениям. Кое-что из арабских математических сочинений постепенно просачивается в Европу. Некоторые предприимчивые европейцы даже ухитряются попадать в арабские университеты, как, например, А Кордову в Испании, хотя это была опасная штука и студент-христианин рисковал головой в мавританском университете. Во время крестовых походов влияние арабской науки, стоявшей значительно выше европейской, еще усиливается. Народы Европы начали сомневаться в могуществе церкви, которая подняла все их страны на бесполезные войны. Некоторые люди открыто говорили, что если арабы сильнее европейцев, то, значит, и культура их выше. А так как культурными людьми в то время были преимущественно клирики, то есть люди из духовенства, то в Европе начали раздаваться голоса, утверждавшие, что, может быть, и религия арабов лучше христианской. Это привело церковников в ужас, и они всеми возможными средствами стали бороться с арабской культурой. И тормозить всякую научную работу. Дошло до того, что Парижский университет однажды постановил, что тот, кто публично противопоставляет Аристотеля, переделанного католическим духовенством на свой лад, арабским ученым и соглашается с ними, достоин смертной казни. Просто и ясно! Но все-таки люди думали и понемножку работали. А затем арабские халифаты пали под ударами новых завоевателей — монголов и турок. И вот, когда пала Византия, то беженцы-греки, как мы уже тебе говорили, привезли в Италию целый ряд драгоценных сочинений греческих математиков и философов. Сочинения эти стали переводить, изучать и печатать. А это оказалось мощным толчком для всей европейской науки. И, преодолевая чудовищные препятствия схоластических и церковных бредней, к семнадцатому веку наконец появились замечательные работы великого Галилея. Его современник Кеплер изучал по методу Архимеда площади и объемы криволинейных фигур.
— 337 —
Кеплер первый ввел в астрономию сперва овальную линию, о которой он узнал из работ живописца Альбрехта Дюрера, а затем конические сечения, выяснив, что Земля ходит по эллипсу вокруг Солнца, находящегося в одной замечательной точке внутри эллипса. Это показало людям науки, что геометрические законы вплотную примыкают к законам природы. Понимаешь, как это было важно! А Галилеи начал изучать законы падения тел, то есть законы движения. И затем, после долгих и очень трудных опытов с наклонной плоскостью, ему удалось показать, что брошенный камень, стрела, выпущенная из лука, пуля, которая вылетает из пищали или мушкета, и струя воды из бочки или фонтана движутся тоже по одному из конических сечений, а именно по параболе. Таким образом, конические сечения из геометрии попали в астрономию и механику с великой пользой для этих последних. Ты уже слышал, как церковь расправилась с Галилеем. Сочинения Кеплера тоже были признаны греховными и «богопротивными», и добропорядочным католикам было воспрещено их читать под угрозой «отлучения от церкви», а это наказание в то время обозначало потерю всех гражданских прав. Но как ни бились монахи, на какие чудовищные жестокости они ни решались, ничто не могло остановить движения науки вперед. Когда люди увидели, что математика помогает и в механике и в астрономии, они постепенно перестали верить монахам, и те начали неохотно и осторожно, но все-таки отступать. Теперь, я думаю, ты понимаешь, что когда после работ Кеплера и Галилея математики не только не стали отворачиваться от понятия движения, но вплотную занялись им, то первое, о чем им пришлось подумать, это был вопрос о скорости движения. А чтобы ты составил себе хотя бы некоторое представление о том, до чего все это было трудно, я расскажу тебе, как бились до Галилея с вопросом о скорости. Аристотель, например, учил, что закон инерции есть закон сохранения покоя, неподвижности, и так именно и думали даже самые замечательные умы Возрождения, как, например, великий художник, механик и математик Леонардо да Винчи, Кардан и другие. Один из предшественников Галилея, Телезио, уже знал, что падение тела есть ускоренное движение, но он не пытался выяснить законы и обстоятельства этого, а просто пояснял это литературной аналогией, сравнивая падающее тело с уставшим путником, который, подходя к цели путешествия, ускоряет шаг. Мыслитель не только должен был найти в себе силы, чтобы оторваться от этих чисто словесных, а стало быть, беспомощных сравнений и аналогий, но должен был пойти по совершенно новому пути, непрестанно споря к тому же с таким крупнейшим авторитетом, каким был Аристо-
— 338 —
тель. Самые споры но этим вопросам нередко заходили в тупик, ибо спорящие плохо понимали друг друга. Галилея, например, упрекали в том, что он «не знает» или «не хочет знать» того, что говорили по вопросам физики древние поэты и философы, и Галилею приходилось с большим трудом втолковывать своим критикам, что он вовсе не «не знает» того, что говорили Вергилий, Лукреций или Сенека, а спорит с ними, утверждая, что они в данном случае ошибались и что это можно доказать на опыте. Но когда вопрос о скорости облекся наконец в математическую форму, то немедленно проблема изучения скорости движения в природе стала задачей изучения скорости изменения ординат кривых. Одним из первых ученых, кто занимался этим, был Торричелли. Вот почему вопрос о методе касательных приобрел такую исключительную важность. Люди и раньше, конечно, знали, что пропорциональная зависимость между двумя величинами наблюдается не всегда. И только работы Галилея впервые показали, как именно в случае падения осуществляется зависимость между временем и пройденным расстоянием, а кроме того, впервые был получен и точно сформулирован закон связи двух переменных величин, более сложный, чем тройное правило и пропорциональная зависимость.
— А что же тут такого? — спросил Илюша. — Не понимаю, почему нельзя рассуждать об изменении явлений, исходя из простой пропорциональности, если это всякому понятно?
— Дело не в том, что нам «понятно», — продолжал Радикс, — и какого мы «мнения» о явлениях, а в том, каковы законы этих явлений! А ведь они существуют сами по себе, мы можем только изучать их, но не навязывать явлениям наши «мнения». Мне достаточно того, что я устанавливаю, что в природе имеются не только зависимости пропорционального характера. Хорошо, если ты можешь сразу ответить на вопрос «почему?». А ведь есть немало случаев, когда это не так легко сделать. Например, на лодке установлен моторчик в 1,25 лошадиной силы, и лодка идет со скоростью восемь километров в час. Можно ли утверждать, что если я поставлю на эту лодку мотор в десять сил, то лодка помчится, как скорый поезд, и будет делать шестьдесят четыре километра в час? Нет, этого утверждать нельзя. Чтобы увеличить скорость в n раз, надо мощность увеличить примерно в n3 раз, а чтобы достичь такой скорости, придется обзавестись мотором не в десять, а в шестьсот сорок сил, тогда как десятисильный мотор даст только удвоенную скорость. Еще пример: ты без всякого труда можешь закинуть спортивный диск весом в восемьсот граммов на восемнадцать шагов. Но можно ли из этого вывести, что более легкий диск, в двадцать граммов весом, ты закинешь со-
— 339 —
гласно тройному правилу на семьсот двадцать шагов, то есть без малого на полкилометра? Разумеется, это сплошная ахинея, ибо такой очень легкий предмет далеко не забросишь, а уж о полкилометре смешно и говорить даже. Нередко исследователь вовсе и не задается вопросом «почему?». Очень хорошо, если он может ответить на вопрос «как?». Мы не знаем, что такое тяготение, но отлично знаем, как оно действует, и поэтому можем вычислить и траекторию артиллерийского снаряда, и толщину фундамента для большого здания, и многое другое. На этот вопрос Галилей дал совершенно точный ответ для случая падения тел. Надо еще принять во внимание то, что открытия Кеплера и Галилея связали воедино механику с геометрией, то есть как раз такие две науки, которые греки как бы противопоставляли одну другой. А вскоре выяснилось, что метод касательных имеет непосредственное отношение к бесконечно малым.
— Вот как! — сказал Илюша. — Как же это получилось?
— Дело вот в чем, — отвечал Радикс. — Давай-ка нарисуем кривую и проведем секущую. Она пересечет кривую на чертеже два раза — в точках А и Б. Дальше мы будем рассуждать так. Наша кривая связывает две величины — х и у. Их мы будем называть переменными: икс — независимой переменной, а игрек — зависимой. Ведь действительно, вспомни, как мы подставляли в уравнения различные произвольные значения икса и следили за изменением игрека. Значит, в самом деле игрек изменяется в зависимости от икса. Или, как принято говорить, игрек есть функция икса.
Если заставить точку В двигаться по кривой АВ к точке А, то секущая ABF, поворачиваясь около точки А, будет приближаться к некоторому предельному положению, когда бесконечно малое расстояние между точками А и С обратится в нуль; в этот миг секущая превратится в касательную.