Чтение онлайн

на главную

Жанры

Шрифт:

И тут Величайший Змий вырос снова перед ними. Он взглянул на Илюшу, и мальчику показалось, что это могущественное чудовище даже улыбнулось!

— 352 —

Схолия Семнадцатая,

в которой Илюша припоминает разные разности из предыдущих схолий, оставшиеся не совсем ясными, а Радикс рассказывает ему об истории надгробного камня Архимеда, погибшего от меча римского грабителя, о спирали Архимеда. Затем следует масса любопытнейших подробностей о веретенах, о шотландском сыре, о фокусах, которые придумали

древнегреческие геометры, о том, как в старину индусы решали кубические уравнения, как в шестнадцатом веке бедный мальчик-заика учился на кладбище грамоте, а также почему у квадрата такая большая площадь и что по этому поводу думает касательная; о битве за высоту над городом Клермоном. А затем Илюша присутствует при волшебном опыте, который поясняет, что такое прямая линия и какие чудеса с ней случаются при ее путешествиях в мировом пространстве. Вслед за этим Илюша и Радикс видят нечто чрезвычайно странное… Но пока это еще страшный секрет, который, может быть, раскроется в будущем…

— Ну, теперь ты доволен? — спросил Радикс.

— Да, — сказал Илюша, — я узнал массу интересных вещей. Теперь я, кажется, понимаю, почему так уважают Архимеда и как велико могущество Змия. Но только у меня есть еще вопросы.

— Ну что ж! Давай твои вопросы. Может быть, как-нибудь вдвоем разберемся.

— 353 —

— Помнишь, ты где-то, кажется в Схолии Одиннадцатой, перечислял мне титулы Величайшего Змия? Так вот, я хотел тебя спросить о них. О площадях я теперь понял: путем интегрирования можно получить площадь любой криволинейной фигуры. С объемами я тоже как будто сообразил. Это, вероятно, делается путем суммирования бесконечно тонких слоев тела, как Демокрит считал объем конуса?

— Правильно. А сейчас мы можем закончить вывод формулы для объема конуса, о которой мы толковали в Схолии Пятнадцатой. Если рассечь конус плоскостью, проходящей через его ось, то получится треугольник. Из рассмотрения этого треугольника ты убедишься в том, что радиус основания цилиндрика, отстоящего на расстояние h от вершины, определится при помощи пропорции:

r/R = h/H

где Rрадиус основания, а H — высота конуса. Отсюда

r = (R/H)h

и площадь основания цилиндрика будет

r2 = (R2/H2) · h2

Теперь предположим, что мы делим высоту конуса на n частей. Тогда высота каждого цилиндрика будет H/n, а последовательные расстояния оснований цилиндриков от вершины конуса, то есть радиусы этих оснований, будут

h, 2h, 3h,… nh.

Поэтому сумма объемов этих цилиндриков равна

(R2/H2) · H/h (h2 + 22h2 + … + n2h2) = R2/H (12 + 22 + … + n2) / n3

Как и в предыдущей схолии, ты убедишься, что предел последнего множителя при неограниченном возрастании n будет равен 1/3 , и для объема конуса получается выражение:

1/3 R2H

— 354 —

Множитель 1/3 ты можешь рассматривать как лежащую на этой формуле печать Великого Змия.

— Как интересно! — сказал Илюша. — А с объемом шара можно справиться таким способом?

— Я приведу тебе только чертеж, который, по преданию, Архимед завещал вырезать на своем надгробном памятнике.

Здесь ты видишь цилиндр, вписанный в него шар радиуса R и конус. Разбей все три тела на тонкие «цилиндрические» слои и легко установишь, что на расстоянии h от центра шара площадь поперечного сечения самого шара равна:

(R2h2) = R2h2

то есть разности площадей поперечных сечений цилиндра и конуса. Суммируя объемы всех тонких цилиндрических пластинок и переходя к пределу, как мы это делали для конуса, находим, что и объем шара тоже будет равен разности объемов цилиндра и конуса. Этот закон и был открыт Архимедом. Таким путем можно найти не только объем всего шара, но и объем любого шарового слоя. В формулы войдет опять множитель 1/3 , печать Великого Змия, свидетельствующая о том, что здесь приходилось интегрировать функцию, содержащую квадрат переменной (в данном случае — квадрат высоты h).

— Очень хорошо! — отвечал мальчик. — А теперь вот еще что. Ты назвал Великого Змия развертывателем спиралей. Что это значит?

— Это значит, что путем интегрирования можно получить длину дуги любой кривой, например параболы, окружности и так далее. В частности, и длину спирали. Мы ведь уже говорили, как находится длина дуги.

— Но я должен сознаться, — вздохнув, сказал Илюша, — что до сих пор не пойму, как при помощи этой спирали получается длина окружности, то есть почти квадратура круга?

Поделиться:
Популярные книги

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Титан империи 4

Артемов Александр Александрович
4. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 4

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Наизнанку

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Наизнанку

Вечная Война. Книга VIII

Винокуров Юрий
8. Вечная Война
Фантастика:
боевая фантастика
юмористическая фантастика
космическая фантастика
7.09
рейтинг книги
Вечная Война. Книга VIII

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5