Чтение онлайн

на главную - закладки

Жанры

Воспоминания о Лунном корабле
Шрифт:

Особый вопрос стоял о грунте, на который производился сброс. Вспомним, как спрогнозировал твердость грунта С.П.Королев. Лунный грунт — это что-то, похожее на пемзу. Грунт для укладки в поворотный поддон подбирали особенно тщательно. В горах Армении нашли туф, очень похожий по виду на пемзу, но гораздо мягче. После долгого анализа различных образцов остановились именно на армянском туфе. Туф прислали. Не обошлось без курьезов. В одном из ящиков обнаружили увесистую металлическую чушку. Во вложенной записке прочитали, что положена она для увеличения массы посылки. Зачем? Так и не отгадали, вот уж действительно армянские шутки. Туф получили в виде отдельных небольших плит размерами примерно 300х400 мм. Оставалось теперь сымитировать на поддоне лунный кратер, и установка была готова.

Не одну сотню сбросов сделали на моделях. Хорошо показала себя активная схема, но и пассивная ей не уступала по устойчивости. Тогда и решили использовать двигатели прижатия активной схемы в пассивной схеме, другими словами, делать пассивную схему в активном исполнении.

Предложил это соединение И. С. Прудников, начальник нашего отдела. Сделали по такой схеме еще сотню сбросов и перешли к испытаниям полноразмерного макета. Разработки по активной схеме не прошли даром. Идея со взаимной дифференциальной связью выдвижных элементов была позднее использована и в стыковочных устройствах АПАС в программе «Союз-Аполлон».

Общий вид установки для испытаний придумывать не было необходимости. Просто нужно было увеличить размеры установки, на которой сбрасывали модели. К экспериментам подключили опытных испытателей из г. Загорска (ныне г. Сергиев-Посад), которые вместе с нашими специалистами трудились в поте лица на специально созданной экспериментальной базе. Но прежде чем создать натурный образец, нужно было выбрать энергопоглотитель. Пассивная схема позволяла поместить его внутри подкосов и стоек. Стойки работали только на сжатие, а подкосам необходимо было обеспечивать гашение энергии как при растяжении, так и при сжатии. Стали искать решение. Разработка конструкции шла под руководством А.А.Саркисьяна, а выполняли ее два высококлассных инженера: В.П.Галченко и А.Г.Авхименко. Оба закончили МВТУ им. Баумана. Оба обладали сильными характерами и упорством, но имели один физический недостаток — были глухими. Какую же силу воли нужно было иметь, чтобы преодолеть недуг и на равных со всеми участвовать творчески, с энтузиазмом в разработке ЛК. Общались мы с ними просто, они хорошо понимали артикуляцию, а говорить могли свободно. Порой мы забывали, что они не слышат. Вот этим людям и досталась разработка стойки и подкоса. А.А.Саркисьян выдавал идеи, которые на кульманах В.П.Галченко и А.Г.Авхименко превращались в реальные конструкции. Нужно отдать должное тому, с каким упорством В. П. Галченко отстаивал свои узлы в механизмах, он обладал таким пробивным характером, что даже производственники перед ним пасовали.

Вернемся к энергопоглотителям. Первое, что приходило в голову, это использовать в качестве энергопоглотителя пружины и обыкновенный храповник, но диаграмма обжатия у пружины показывает, что поглощается всего 50 % энергии от возможной. Предлагались срезные амортизаторы, которые представляли собой резец, снимающий стружку с поршня. Есть и такие в технике. Но у таких поглотителей настолько велик разброс характеристик, что, несмотря на полную диаграмму поглощения энергии, от их применения отказались. Не сразу мы пришли к убеждению, что для нашего корабля в трубах-опорах следует использовать сотовые пакеты из металлической фольги. Стали подбирать вначале фольгу, потом ячейку, от этого выбора зависела сила сопротивления. Пришлось отказаться от алюминиевой фольги — не смогли подобрать необходимую величину силы сопротивления. Предложили титановую фольгу. Она по своим свойствам теоретически нас устраивала, но как изготовить эти вкладыши? Стали изготавливать пакеты путем намотки в рулон гофрированной ленты и сразу же прихватывали слои точечной сваркой. Такие сотовые вкладыши обладали одним очень важным свойством: они пропускали через себя вполне определенную силу, причем обладали стабильными свойствами, несмотря на технологические отклонения в изготовлении. За счет потери устойчивости отдельных сотовых ячеек они при обжатии выдавали одну и ту же силу сопротивления. Не обошлось и без курьезов. В первый момент времени происходил некоторый заброс по величине этой силы. Но это убрать оказалось не так сложно. Ввели предварительное небольшое технологическое обжатие. Так и получили вкладыши, позволяющие эффективно гасить посадочные скорости.

Всем хороши были сотовые поглотители, но был у них один недостаток — они были одноразовыми, т. е. после срабатывания они складывались и восстановлению не подлежали. Но ведь и мы совершали только одну посадку. Допустим, что мы сели в один район, а нужно перелететь в другой: на такой маневр требовалось так много энергетики ракетного блока, что нам, считавшим каждый килограмм, да что там килограмм, каждый грамм, заложить такую схему и в голову не приходило. Понимали, что во время испытаний придется обжать не одну сотню вкладышей, тем самым мы получали большую статистику по характеристикам сот. На это пошли и не ошиблись.

Мы хорошо продумали все основные функции посадочного устройства. Осталось только уложить ноги посадочного устройства в транспортное положение, так как установка их в головном блоке в рабочем (раскрытом) положении была непозволительной роскошью. Правда, это требовало создания средств раскрытия и фиксации. Задачу решили следующим образом. Основную стойку специальным кронштейном каркаса удерживали в прижатом положении, и по команде пирозамок освобождал ее, а раскрытие производили пружины, установленные внутри подкосов, так что подкосы выполняли еще и функции средств раскрытия, что делало довольно сложную кинематику самого подкоса.

Все основные узлы посадочного устройства были выбраны. Теперь предстоял процесс их отработки и проверки. Экспериментальную группу возглавлял Г.В.Баканов. Он пропал в Загорске надолго, ведь посадочное устройство отрабатывалось при самых различных сочетаниях кинематических параметров, климатических условий, различных наклонах поверхности посадки. Горизонтальные боковые скорости сброса варьировались от 0 до 1,5 м/сек, изменялись на несколько метров высоты сброса, угол встречи с поверхностью с помощью механизма менялся от +30° до отрицательных значений (посадка в сторону склона). Имитировались различные размеры кратеров, и при каждом изменении условий необходим был не один сброс, чтобы исключить все случайности. Не одну сотню испытаний провела эта группа и обработала результаты. Когда испытания вышли на заключительную стадию, решили пригласить космонавтов посмотреть, как идет отработка посадочного устройства. Приехали уже знаменитые А.А.Леонов и В.Ф.Быковский с группой молодых космонавтов. С ними приехал легендарный летчик-испытатель С.Н.Анохин, в то время занимавшийся подготовкой космонавтов. Подошли к месту испытаний. Предложили подняться на сбросовую площадку. Наклон площадки был 30°. Стоять было просто невозможно. Были сумерки. И вот по команде руководителя сначала медленно, потом все быстрее двигается рама, на которой подвешен грузовой макет корабля со штатным ЛПУ (рис. 28, 30, 31).

Рис. 28. Проведён сброс натурного макета ЛПУ

Рис. 29. Инженеры-проектанты А.А.Саркисьян и Ю.М.Лабутин наблюдают за проведением эксперимента

Рис. 30. Отработка посадки. Двигатели прижатия выполняют свою задачу

Рис. 31. Отработка посадки. Двигатели прижатия выполнили свою задачу: объект не перевернулся

Есть отцепка! Макет падает на опорную площадку со скоростью по склону примерно 1 м/сек. Коснулись задние опоры, просели. Есть касание передних опор. Макет продолжает по инерции движение вперед. Передние ноги сильно вдавливаются в грунт. С ужасом замечаем отрыв задних опор от поверхности. Неужели перевернется!? И здесь раздается грохот, мгновенье и макет весь в огне на фоне ночного неба. Это сработали двигатели прижатия. Они с успехом выполнили свою роль. Менее чем за одну секунду двигатели припечатали макет к поверхности. Зрелище было захватывающим. Все побежали к площадке. Макет устойчиво стоял на своих ногах, а мы даже опирались на него, чтобы взобраться повыше. Испытание прошло успешно. Разъехались по домам довольные. Однако утром нас ждал серьезный разговор у заместителя главного конструктора К.Д.Бушуева, отвечавшего перед В.П.Мишиным за создание ЛК. Имея громадный опыт в создании ракетно-космической техники и понимая, какой осадок остается после неудачных испытаний, а иногда бывало так, что и тема после этого закрывалась, он объяснял нам, молодым, что нельзя приглашать высоких гостей на смотрины, пока все не отработано. А если было бы опрокидывание? Какое чувство испытывали бы космонавты, которым предстояло лететь на таком корабле? Нас спас от выговоров и дальнейших нагоняев только успешный эксперимент. Но урок запомнился на всю жизнь.

Испытания проходили успешно, практически отработали все возможные условия посадки. Устойчивость схемы была хорошей. Но датчики, следящие за перегрузкой, показывали ее повышение в начальный момент касания. Сказывалась инерционность подвижных частей опор. Вышли из положения следующим образом: наклеили на опорные тарели сотовые башмачки. Эти башмачки, как подушечки на кошачьих лапках, позволяли смягчить усилия в начальный момент касания.

Последний штрих в отработке динамики посадки предложил Л. И. Киселев, наш сотрудник, расчетчик кинематики движения. Для уменьшения скорости встречи с поверхностью по чувствительному щупу включать до касания дополнительно введенные парирующие двигатели. Многие видели по телевизору, как приземляется спусковой аппарат (СА) из космоса. Вот он летит на парашюте, и вдруг облако пыли — это срабатывают пороховые двигатели мягкой посадки, они резко уменьшают скорость встречи СА с поверхностью. Эту идею использовали и у нас. Долго спорили на какой высоте выключить двигатель. Если выключить очень высоко — большая скорость при встрече с поверхностью. Если очень низко — поднимется пыль с вытекающими отсюда последствиями. Установка парирующих пороховых двигателей позволила оптимально решить весь комплекс вопросов прилунения корабля.

Поделиться:
Популярные книги

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4

С Новым Гадом

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
7.14
рейтинг книги
С Новым Гадом

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3

Назад в СССР: 1985 Книга 2

Гаусс Максим
2. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в СССР: 1985 Книга 2

В теле пацана 4

Павлов Игорь Васильевич
4. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 4