Введение в логику и научный метод
Шрифт:
Более интересное и плодотворное изменение значений слов происходит в результате расширения сферы их применения по причине метафорического расширения их значения. Так, слово «управляющий» («governor») некогда обозначало рулевого на корабле, «дух» («spirit») обозначало дыхание, изгиб трубы называется «локтем», а соответствующие соединительные окончания трубы называются «мама» и «папа» и т. д.
На данном этапе можно суммировать преимущества, которые можно получить от специально построенных символов.
Во-первых, такие символы позволяют различить и впоследствии не отождествлять различные значения. Нам нужно лишь договориться об употреблении отдельного символа
Во-вторых, удобный символ позволяет сконцентрироваться на том, что является существенным в данном контексте. Когда в математике мы заменяем букву, например R, сложным выражением, таким как (а + Ь + с + d), или когда мы в силлогизме используем буквы «S», «Р», «М» для обозначения терминов «Сократ», «смертный» и «человек», мы недвусмысленно даем понять, что результат нашего размышления зависит не от специального значения этих выражений, а от соединяющих их абстрактных отношений.
Третьей важной функцией символов является ясное и краткое проявление формы суждений. Данная функция давно используется в математике. Так, в качестве элементарного примера можно рассмотреть различие в форме между «4х2 = 5х – 1» и «4х3 = 5х2 – 1» и тождество форм между «х + 4– у = 1» и «4х = Зу», которые можно усмотреть при первом же поверхностном взгляде. В первой паре уравнений одно является квадратным, а другое – кубическим, оба уравнения из второй пары являются линейными. Если бы подобные уравнения формулировались словами, то людям было бы не под силу осуществлять длинные цепочки умозаключений. Так, описание уравнений Максвелла в словах заняло бы несколько страниц, что укрыло бы существенные отношения между различными элементами. Адекватно введенные символы проясняют то, что является постоянным и неизменным в суждении, и то, что является лишь переменной. Неизменные свойства являются формой, или структурой, суждения.
Четвертое и значительное преимущество подобных символов – это их функция, сокращающая физические и мысленные усилия. Когда выработаны символы, многое из того, что ранее требовало концентрации и внимания, выполняется механически. Зачастую символьная запись подсказывает выводы, которые при обычных условиях не были бы замечены исследователем. Открытие отрицательных и мнимых чисел, введение
Максвеллом электрического смещения и последующее открытие эфирных волн стали прямым следствием указанного свойства символов. Именно по этой причине иногда говорится, что «при расчетах перо кажется умнее своего пользователя». Важность специально построенных символов с очевидностью проявляется именно в этой возможности использовать их в качестве исчисления.
§ 5. Исчисление классов
Развитие адекватной символьной записи наряду с открытием формальных свойств отношений позволили обобщить традиционную логику, равно как и получить мощное исчисление.
Например, операции сложения, умножения и т. д. в математических науках могут рассматриваться в терминах теории отношений. Так, операция сложения основывается на трехместном отношении. Отношение а + Ь = с связывает два слагаемых, а и Ь, с с. Данное отношение является много-однозначным, поскольку любой паре слагаемых соответствует одна, и только одна, сумма, тогда как одной сумме соответствует неопределенное число пар слагаемых. Однако если сумма и одно из слагаемых зафиксированы, то другое слагаемое однозначно определимо. Подобные трехместные отношения, присутствующие в различных видах операций, можно изучать и более подробно.
Однако нет необходимости в том, чтобы этими операциями были только обычные алгебраические операции. Операции, в целом относящиеся к типу неколичественных, были выработаны для сочетания классов, рассмотренных с их объемами.
Ниже мы предлагаем краткое описание общей теории классов суждений, которое хотелось бы предварить советом, взятым из работ Доджсона: «Если вы не поняли определенный отрывок, перечитайте его заново. Если он все равно остался непонятным, перечитайте его заново. Если, прочитав отрывок три раза, вы не достигли понимания, то, скорее всего, ваш мозг начал уставать. В этом случае отложите книгу и займитесь другими делами, а на следующий день, когда вы прочтете его свежим взглядом, он наверняка покажется вам вполне легким для понимания».
Из истории символической логики известно, что сначала была разработана теория классов, поскольку было изначально замечено, что аристотелевскую логику можно рассматривать как дисциплину, имеющую дело с взаимосвязями между классами. Однако при систематическом изложении принципов логики логика классов не занимает первого места относительно других принципов. Утверждать, что два класса находятся друг к другу в определенном отношении, означает утверждать определенное суждение. Любое исследование в рамках теории классов использует принципы теории суждений. Поэтому теория суждений предшествует любому другому исследованию в области логики и должна быть разработана в первую очередь. Однако в столь элементарном обсуждении, каким является наше исследование, данным обстоятельством можно пренебречь, поскольку наша основная цель заключается в том, чтобы указать на то направление, в котором может быть расширена традиционная логика, а не в том, чтобы предложить систематический анализ обобщенной логической теории. Поэтому ничего страшного не произойдет, если мы, изменив логическому порядку, проследим за хронологической последовательностью в разработке данных логических принципов.
Под термином «класс» мы будем понимать группу индивидуальных объектов, каждый из которых обладает определенными свойствами, благодаря которым он считается членом данного класса. Так, класс, обозначаемый термином «человек», является множеством отдельных людей, класс, обозначаемый термином «четное число», является множеством четных целых чисел и т. д. Таким образом, мы будем рассматривать классы относительно их объема. Область возможных классов называется универсумом рассуждения (предметной областью) или просто универсумом (областью). Он будет обозначаться символом «1». Может случиться так, что класс не будет содержать никаких членов. Например, класс людей ростом в двадцать футов не имеет членов, хотя и обладает определяющей характеристикой, а именно: человек ростом в двадцать футов. Такой класс будет называться нуль-классом и будет обозначаться символом «О». Понятие нуль-класса, несмотря на свою сложность для начинающих, имеет много технических преимуществ.
Существует три вида операций над классами, каждый из которых имеет собственное обозначение. Рассмотрим класс мужчин на универсуме людей. Исключив этот класс из указанного универсума, мы получим класс женщин. Индивиды, являющиеся членами универсума, но не являющиеся членами класса мужчин, будут обозначаться как «дополнение» к классу мужчин. Следовательно, женщины являются дополнением к классу мужчин на данном универсуме рассуждения. Класс и его дополнение исключают друг друга и исчерпывают универсум рассуждения. Если «а» представляет некий класс, то «не-a» представляет его отрицание.
Теперь рассмотрим два класса: английские книги и французские книги. Класс, содержащий английские или французские книги, называется логической суммой этих классов. Операция объединения классов подобным образом называется логическим сложением. Если а и Ь являются классами, то их логической суммой будет а + Ь. Читается это либо как «а плюс Ь», либо как «а или Ь». Данная дизъюнкция не является строгой. Символ «+» используется, поскольку логическое сложение обладает некоторыми формальными аналогиями по сравнению со сложением в обычной арифметике.