Я познаю мир. Военная техника
Шрифт:
Схема многоцелевого высотно–космического самолета, созданного в Петербурге
И это не все. Часть обтекающего аппарат воздушного потока поступает в тракт уникальной двигательной установки. Она магнитоплазмодинамическая. Проще говоря, к прямоточному воздушно–реактивному двигателю добавлены магнитно–гидродинамический (МГД) генератор и такой же ускоритель. Гиперзвуковой воздушный поток сначала резко тормозится в искусственно созданном магнитном поле, тратя часть энергии на наведение электродвижущей силы. При этом выделяется около 100
Проектируемый летательный аппарат способен преодолевать маршруты длиной до 20 тыс. км без дозаправки со скоростями выше 10.000 км/ч, подниматься на высоту 30–60 км. Располагая мощной бортовой энергетикой, он справится с решением задач поистине планетарного масштаба. Скажем, обеспечит доставку людей и грузов в любую точку земного шара не более чем за два часа или окажет помощь судам, терпящим бедствие в океане и космическим кораблям на околоземных орбитах. Он может вести метеорологический и экологический дозор за поверхностью планеты. Не исключено даже, что он пригодится и для уборки мусора с околоземных орбит...
Так обстоят дела сегодня. А если заглянуть в день завтрашний? Последнее ли слово – космический самолет?
"Я бы отдал предпочтение системе полностью многоразовой и одноступенчатой, без крыльев", – заметил как–то по этому поводу летчик–космонавт, доктор технических наук К.Р. Феоктистов. И для такого суждения есть основания. На старте у сегодняшних "Шаттлов" крыло, по сути, ненужная нагрузка, создающая излишнее сопротивление. Его полезные качества никак не используются, на орбите крыло тоже бесполезно. При возвращении же это наиболее труднозащитимая часть корабля, нагревающаяся до 1500°С. Свою роль крыло выполняет на самом конечном участке полета – при планировании и заходе на посадку.
Так не резонно ли от него избавиться? Как? Уже корабли типа "Союз" и "Аполлон" имели достаточные аэродинамические качества, позволявшие сажать их с точностью до километра. Откуда у бескрылого аппарата такие свойства? Давайте разберемся.
Конструкторы давно заметили: у птиц туловище похоже на половинку куриного яйца, слегка утолщенную сзади и обращенную вниз плоской стороной. Поэтому, даже сложив крылья, птица продолжает планировать, поддерживаемая подъемной силой корпуса. Что же мешает перенести это на многоразовые транспортно–космические корабли?
Первые экспериментальные аппараты подобного типа были опробованы еще более двадцати лет назад. В 1966 году подобный летательный аппарат, подвешенный под крыло тяжелого бомбардировщика американских ВВС, был поднят на высоту 14 км. Здесь аппарат отделился от самолета и перешел в планирующий полет. Семиметровая яйцеобразная капсула весом более 2,5 т плавно понеслась к земле, и через 4 минуты пилот–испытатель И. Томсон благополучно посадил машину на дно высохшего соляного озера. Скорость аппарата в момент приземления составляла 320 км/ч, что даже меньше, чем у современного "Шаттла".
Космический самолет будущего, возможно, обойдется практически совсем без крыльев
Плывущие
В наше время воздушные шары используются лишь в спортивных целях (на одном из них даже облетели без посадки вокруг земного шара) да для изучения состояния верхних слоев атмосферы синоптиками. Не лучше делай у дирижаблей – лишь некоторые из них используются4 рекламных целях и возят туристов. Но бывали времена, когда специалисты предлагали проекты один заманчивее другого. О некоторых из них, некогда значившихся под грифом "Совершенно секретно", мы и хотим вспомнить сегодня.
Наблюдатели в небе
Пожалуй, первое военное применение воздушного шара было придумано во времена французской революции. С помощью воздушных шаров революционеры из осажденного Парижа пытались наладить сообщение со своими сторонниками за пределами французской столицы. Но попытка провалилась: ветры несли шары куда попало.
Об использовании воздушных шаров в военном деле вспомнили лишь в начале Первой мировой войны. Чтобы снаряды батарей падали точно в цель, огонь должны были корректировать артиллерийские наблюдатели. Обычно они располагались где–нибудь на холме (как говорят военные, на высоте), иной раз даже слезали на деревья. Но что делать, если местность ровная, как стол? Вот тогда изобретатели и предложили поднимать в воздух привязные аэростаты. Так они назывались потому, что были действительно привязаны тросом к лебедке, чтобы не улетели на сторону противника.
К шару, наполненному водородом, привязывали корзину. В нее залезал наблюдатель. Его помощники на земле отпускали тормоз лебедки, и шар взмывал ввысь на длину троса. Наблюдатель видел вражеские позиции и корректировал огонь своих батарей по телефону.
Противник, впрочем, тоже не дремал: завидев в воздухе шар, тут же открывал по нему ружейный и артиллерийский огонь. Тогда шар спешно спускали, перевозили вместе с лебедкой на новое место, и все повторялось сначала. Во Вторую мировую войну аэростатам придумали еще одну работу – "перегораживать небо" стальными тросами в надежде, что ночью в них врежутся вражеские бомбардировщики. Случаев такого улова в мировой истории единицы, но работу летчиков аэростаты все–таки осложняли. Они не давали бомбить с малых высот.
Как перепрыгнуть через реку?
Нашлось военным аэростатам применение и в мирное время. Вы что–нибудь о шарах–прыгунах слышали? Вряд ли... Поскольку ныне о них основательно подзабыли, и в свое время такие конструкции старались не афишировать...
Суть же дела такова...
Как известно, воздушный шар плавает в атмосфере согласно закону Архимеда – как только его удельный вес за счет подогрева воздуха в оболочке или наполнения ее легким газом становится легче воздуха, шар взлетает. Высоту полета и в какой–то мере грузоподъемность шара можно регулировать с помощью балласта – мешков с песком или дробью, баков с водой, загружаемых на борт. По мере необходимости экипаж сбрасывает часть балласта за борт, шар становится легче и поднимается выше.
Схема применения шара–прыгуна
А теперь представьте себе вариант: сравнительно небольшой воздушный шар наполняется гелием или водородом с таким расчетом, чтобы уменьшить вес человека, скажем, на 90%. Что произойдет, если человек, сохранив свою мускульную силу, захочет подпрыгнуть? Правильно, он взмоет "выше дерева стоячего, ниже облака висячего"... Или, потренировавшись, сможет совершать прыжки в длину на несколько десятков, а то и сотен метров...