Юный радиолюбитель
Шрифт:
Катушка L1 — индуктивностью 100 мкГн. Для нее можешь использовать унифицированный или подобный ему самодельный каркас с ферритовыми кольцами и подстроечным сердечником, намотав на каркас 65–70 витков провода ПЭВ-1 0,15-0,2. Окончательно индуктивность катушки подгоняй с помощью подстроечного сердечника по заводскому прибору.
Конструкция прибора может быть двухпанельной, как показано на рис. 284.
Рис. 284. Конструкция прибора
Верхняя
Образцовые резисторы R7 R9 и конденсаторы С3-С5, прежде чем их вмонтировать, надо обязательно проверить по точному измерительному прибору. Точность их номиналов должна быть возможно более высокой, во всяком случае не хуже 5 %. Измерь номиналы нескольких резисторов и конденсаторов для каждого поддиапазона и отбери те из них, которые имеют наименьшие отклонения от номиналов.
Генератор прибора никакой наладки не требует. А чтобы убедиться, работает ли он, достаточно подключить к его выходу, например, параллельно реохорду, телефоны — в них услышишь звук средней тональности. Генератор может не работать только из-за ошибок в монтаже или негодности каких-то деталей.
Единственно, что тебе, возможно, придется сделать это подобрать желаемый тон звука путем подбора емкости конденсаторов С1 и С2 мультивибратора. А вот с градуировкой шкалы тебе придется повозиться порядочно ведь от того, насколько точно ты ее разметишь, зависят и результаты будущих измерения.
Шкала реохорда общая для всех видов измерений. Значит, градуировать (размечать) ее можно только для одного поддиапазона измерений. Делать это целесообразнее для поддиапазона сопротивлений 10 Ом — 1 кОм или 1-100 кОм.
И вот почему: во-первых, резисторы таких сопротивлений наиболее ходовые, а во-вторых, к резисторам вообще при конструировании аппаратуры предъявляются более жесткие требования, чем к подавляющему большинству конденсаторов той же аппаратуры.
Хорошо, если для градуировки шкалы ты используешь так называемый магазин сопротивлении — набор эталонных резисторов, изготовленных из высокоомной проволоки. Он, возможно, есть и в физическом кабинете твоей школы. Но можно воспользоваться и набором резисторов соответствующего номинала, но обязательно с допуском отклонений от их номиналов не более 5 %.
Делай это так. Сначала, установив переключатель S2 на выбранный поддиапазон измерений, подключи зажимам Rx резистор такого же номинала, как и образцовый резистор этого поддиапазона. Для поддиапазона 1-100 кОм это резистор сопротивлением 10 кОм (R8), а для поддиапазона 10 Ом — 1 кОм — 100 Ом (R9). Поворачивая ручку реохорда в обе стороны, добейся минимального звука в телефонах и против «носика» ручки сделай отметку на дуге будущей шкалы. Это отметка множителя «х1,0», соответствующая для нашего примера сопротивлению 10 кОм (1,0х10 кОм = 10 кОм). Она должна находиться в середине дуги шкалы и делить ее на две равные части.
После этого подключай к зажимам Rх другие резисторы убывающих или, наоборот, увеличивающихся номиналов и делай на шкале соответствующие отметки. В конечном итоге у тебя получится примерно такая же шкала, как изображенная на рис. 283.
В описаниях конструкций, публикуемых в радиотехнической литературе, обычно указывают относительное входное сопротивление вольтметра постоянного тока, которым измерены напряжения в цепях конструкции. Делал это и я, рассказывая о рекомендуемых усилителях, приемниках. Случайно ли это? Нет! Потому что напряжения в цепях конструкции, измеренные вольтметром с другим входным сопротивлением, могут быть иными. Объясняется это тем, что вольтметр своим входным (внутренним) сопротивлением шунтирует измеряемую цепь и тем самым изменяет ток и напряжение в ней. Чем меньше его входное сопротивление, тем он сильнее шунтирует измеряемый участок цепи, тем больше погрешность в результатах измерения.
Относительное входное сопротивление вольтметра постоянного тока комбинированного прибора, о котором я рассказал в восьмой беседе, 10 кОм/В. Оно достаточно высокое и во многих случаях вносит незначительные погрешности в измерения. Подчеркиваю, во многих, но не во всех. В тех же случаях, когда измеряемая цепь высокоомная, погрешность измерения становится ощутимой. Таким вольтметром уже нельзя достаточно точно измерить, например, напряжение непосредственно на базе или на коллекторе транзистора, если нагрузочный резистор в его цепи обладает большим сопротивлением. И совсем нельзя измерить напряжение смещения на затворе полевого транзистора, входное сопротивление которого во много раз больше входного сопротивления вольтметра.
А если в комбинированном измерительном приборе будет использован микроамперметр на больший ток Iи, чем 100 мкА? Например, на ток 500 мкА?
В этом случае относительное входное сопротивление вольтметра уменьшится до 2 кОм/В. Измерять им напряжения в цепях твоих конструкций еще можно, но погрешности измерений будут больше. И наоборот, относительное входное сопротивление можно увеличить вдвое, до 20 кОм/В, если для него использовать микроамперметр на ток 50 мкА. Но такой микроамперметр, да еще с большой шкалой, тебе, вероятно, не удастся достать.
Есть, однако, другой путь значительного увеличения входного сопротивления вольтметра — введение в него транзисторов. В связи с этим предлагаю опыт, который поможет тебе разобраться в принципе работы такого прибора.
Принципиальная схема опытного вольтметра изображена на рис. 285.
Рис. 285. Опытный вольтметр
Это как и в измерителе RCL, измерительный мост, в диагональ которого включен микроамперметр РА. Плечи моста образуют, участок эмиттер-коллектор транзистора V, резистор R1 и участки а и б переменного резистора R2. Мост питает элемент G напряжением 1,5 В (332, 316). Измеряемое постоянное напряжение подается на эмиттерный переход транзистора через входные гнезда X1 и Х2 и добавочный резистор Rд, гасящий избыточное измеряемое напряжение. Микроамперметр РА, являющийся индикатором баланса моста, может быть на ток 300–500 мкА и даже больше. Транзистор — с коэффициентом h21Э = 50–60. Сопротивление добавочного резистора Rд зависит от используемого микроамперметра и определяет в основном входное сопротивление вольтметра. Оно должно быть не менее 30–50 кОм.