Зачем нужна геология. Краткая история прошлого и будущего нашей планеты
Шрифт:
Большая часть исследований связи между КМП и вымираниями, проведенных за последнее десятилетие, сосредоточена в трех областях: 1) получение более точной хронологии – и для летописи окаменелостей при вымираниях, и для извержений КМП; 2) разработка новых косвенных показателей (измеримых величин, которые отражают параметры среды, например, температуру) для отслеживания меняющихся условий среды во время вымираний; 3) разработка новых более точных численных моделей для таких меняющихся условий.
Возможно, лучше всего эти подходы иллюстрируют исследования Сибирских траппов (одной из крупнейших магматических провинций планеты) и связи с пермско-триасовым массовым вымиранием – самым смертоносным событием в геологической летописи (тогда погибло более 90 % морских видов и 75 % наземных; см. главу 10). Решающее значение для такой работы имеет детально проработанная геохронология. Измерения, проведенные в одной лаборатории с использованием
6
Восстановление детальной хронологии излияний Сибирских траппов еще далеко от завершения, несмотря на существенный прогресс в последние годы. Точность современных геохронологических методов пока недостаточна для разделения интервалов в десятки тысяч лет при возрасте 251 млн лет. Однако эти методы развиваются стремительно, что позволяет надеяться на решение вопроса в ближайшие десятилетия. – Прим. науч. ред.
На этот вопрос удалось ответить благодаря тщательному изучению того, как развивалась магматическая активность во время излияния Сибирских траппов. Геохронологические исследования показывают, что в течение 300 тысяч лет – то есть до вымирания – основная активность была представлена излияниями поверхностных потоков лавы. Хотя их общий объем сложно оценить, слои этих потоков достигали толщины в несколько километров и, вероятно, выбрасывали в атмосферу значительное количество парниковых газов. Однако летопись окаменелостей показывает, что биологическая реакция при этом была незначительной или вовсе отсутствовала. Затем – возможно, в ответ на увеличившуюся нагрузку со стороны вышележащих лав – поверхностная вулканическая активность прекратилась. Расплавленный материал из мантии продолжал подниматься в кору, однако доминантной формой магматизма стало появление силлов – крупных плоских тел магмы, которые не доходили до поверхности, а простирались горизонтально по осадочным породам, подстилавшим поверхностные потоки лавы. Некоторые силлы достигают 350-метровой толщины, а их общий объем во всей провинции оценивается в два с лишним миллиона кубических километров.
Хронологические исследования показывают, что начало образования силлов точно соответствует началу пермско-триасового вымирания. Сибирские траппы формировались в Тунгусском бассейне – регионе, который в то время был покрыт толстыми слоями осадочных пород, включая эвапориты, карбонаты и уголь – как раз те породы, которые выделяют огромное количество летучих парниковых газов, если их станут нагревать и видоизменять появившиеся силлы. Последовало быстрое глобальное потепление. С помощью показателей, которые можно использовать для расчета температуры морской воды, исследователи выявили, что в экваториальных зонах температура воды на поверхности достигала 40 °C – величины, смертельной для многих видов животных. Наземные температуры были еще выше. Другие ученые использовали другой показатель – количество изотопов лития в океанических отложениях – чтобы продемонстрировать, что в это время шло интенсивное химическое выветривание континентов. Вывод был таков: значительно увеличившаяся концентрация углекислого газа в атмосфере приводила к выпадению кислотных осадков, быстро разрушавших поверхностные породы.
Если рассмотреть совместно результаты недавних исследований по хронологии магматизма Сибирских траппов и измерения различных косвенных показателей для интервала вымирания, то они убедительно подтверждают, что появление силлов в осадочных породах Тунгусского бассейна вызвало массовое выделение парниковых газов в атмосферу. Это привело к быстрому, интенсивному глобальному потеплению и длинному списку побочных эффектов, что в совокупности и обеспечило самое массовое вымирание в геологической летописи. Предполагаемое количество выброшенных парниковых газов намного превышает тот объем, который вырабатывает человечество сегодня. Тем не менее, этот катастрофический эпизод из прошлого Земли может послужить отрезвляющим напоминанием о хрупкости среды на нашей планете.
Читателям,
Парниковая Земля во времена пермско-триасовой границы находится на одном краю спектра температур. На противоположном краю спектра располагаются ледниковые периоды, когда планету сковывал холод. Особо следует отметить интервал времени в конце протерозойского эона – примерно между 850 и 630 миллионами лет назад – который называется криогением (см. рисунок 21). Именно в это время Земля пережила два продолжительных периода экстремального холода, когда ледники простирались до тропиков, а океаны, возможно, были полностью покрыты льдом (состояние Земли-снежка).
Десять лет назад, когда эта книга была впервые опубликована, теория Земли-снежка вызывала споры. Но благодаря новым исследованиям эта идея получила широкое признание. Как и в случае обсуждавшегося выше пермско-триасового вымирания, ключевым элементом здесь стали новые точные измерения возраста и тщательный учет геологических условий для образцов, использованных для датировки. Данные показывают, что первое состояние Земли-снежка длилось более 55 миллионов лет, с 717 до 660 миллионов лет назад; второй эпизод был короче – примерно с 641 по 635 миллионов лет назад. Крайне важно отметить, что измерения на всех континентах и по всему криогению показывают: начало и окончание ледниковых событий были синхронными на всех континентах, и только в этих двух интервалах существуют отложения, типичные для ледникового периода.
Новые исследования подтверждают, что условия Земли-снежка были экстремальными. Например, ученые детально сравнили ледниковые отложения, появившиеся во времена Земли-снежка и во время недавних ледниковых периодов (в частности, плейстоценового ледникового периода, описанного в главе 8). Они обнаружили, что отложения Земли-снежка накапливались чрезвычайно медленно – в десять и более раз медленнее, чем это было во времена более поздних ледниковых периодов; а это означает экстремальные и продолжительные холод и сухость. Они подчеркивают уникальную природу этих промежутков времени: по их словам, скорость накопления гляциальных отложений в состоянии Земли-снежка была самой медленной в истории планеты.
В главе 7 мы коснемся предположений ученых о том, что состояние Земли-снежка всякий раз резко заканчивалось, когда вулканический углекислый газ вызывал глобальное потепление. Недавние исследования наземных ледниковых отложений на Шпицбергене в Арктике подтвердили этот вывод, хотя тут есть тонкость. Специалисты, участвовавшие в этой работе, провели детальное обследование осадочной толщи, отложившейся в конце второго эпизода Земли-снежка (примерно 635 миллионов лет назад). В то время Шпицберген располагался в тропиках. Они обнаружили, что отложения говорят не об одном резком отступлении ледников, а о целой серии отступлений и наступлений, напоминающих циклы Кролля – Миланковича для плейстоценового ледникового периода (см. главу 8). Моделируя поведение низкоширотных ледяных щитов при различных сценариях, они смогли показать, что параметры орбиты, которые влияют на количество солнечной энергии, попадающей на Землю, и являются причиной циклов Кролля – Миланковича, могли воздействовать и на ледники Земли-снежка во времена относительно быстрого перехода между ледниковыми условиями и последующим парниковым климатом. Таким образом, модели подтвердили то, что, по-видимому, демонстрировали и полевые данные: эпизод Земли-снежка закончился не внезапным переключением в теплое состояние, а сложным переходным периодом, в течение которого мировые температуры повышались и понижались под влиянием параметров орбиты планеты.
Подробнее об этих исследованиях можно прочитать в работах Бенна и др., Руни и др., Макленнана и др., Крокфорда и др. (см. библиографию в конце книги).
Наконец, мы подошли к вопросу об антропогенном изменении климата (глава 13). Почти наверняка это та область наук о Земле, в которой за последнее десятилетие достигнуты наиболее масштабные успехи – в первую очередь за счет разработки и уточнения косвенных показателей, которые могут отслеживать различные параметры окружающей среды в разные моменты прошлого Земли, а также за счет развития и уточнения климатических моделей, что стало возможным благодаря повышению вычислительных мощностей компьютеров. Эти показатели позволяют нам оценивать, как планета реагировала на прошлые экстремальные климатические условия, а с помощью итеративного процесса сравнения результатов моделирования с данными косвенных показателей мы получили возможность более точно определять процессы и механизмы, которые контролировали изменения климата в прошлом. Это, в свою очередь, привело к увеличению уверенности в прогнозах климата в будущем при различных сценариях выбросов парниковых газов – в некоторых случаях вплоть до регионального уровня.