Занимательно о космологии
Шрифт:
Глава восьмая
Мы
Семнадцатый год! Год великих потрясений в жизни народов, в политике и в науке. В феврале в Берлине вышел десятый том журнала «Сообщения Прусской академии наук» с короткой статьей, подписанной именем Эйнштейна. Статья называлась «Вопросы космологии и общая теория относительности» и умещалась всего на десяти страницах. Но этого было достаточно для рождения современной науки о вселенной. Науки, не только имеющей свою теорию, но и претендующей на экспериментальное подтверждение своих выводов.
Вселенная Ньютона, атакованная парадоксами Ольберса и Зеелигера, стала к началу нашего столетия для физиков и астрономов расплывчатым и неконкретным понятием. Ее бесконечность в ньютоновском смысле приводила к фотометрическому и гравитационному парадоксам, противореча наблюдениям. Оба парадокса свидетельствовали о катастрофическом неблагополучии в классической физике. Ведь только подумать, ей противоречило само существование вселенной! Нельзя было оставаться и на позициях Гершеля, считая, что в пустом бесконечном пространстве имеется лишь одна звездная система с конечным и вполне определенным числом звезд. В этом случае небесные тела должны были притягиваться друг к другу и слипаться в один ком.
Ньютоновская вселенная, описываемая законами эвклидова пространства, наблюдаемой действительности не отвечала. Мир был другим. Не таким, каким представлял его себе XIX век. Заботливо собираемая «по кирпичику», постройка мироздания рухнула, как карточный домик, под напором вскрывшихся противоречий. Следовало срочно предпринять какие-то кардинальные меры, чтобы вернуть людям гармонию мироздания. Нужно было найти такую модель мира, которая, не противореча уже открытым и проверенным законам физики, не только противостояла бы парадоксам Ольберса и Зеелигера, но и могла предсказать новые результаты, которые поддавались опытной проверке на базе возросших технических возможностей астрономии и физики.
Читатель, надо полагать, помнит, что выход из тупика, созданного гравитационным и фотометрическим парадоксами и вторым началом термодинамики, искали многие. Автор уже упоминал об изящных математических решениях К. Шарлье, иерархические структуры которого были свободны от парадоксов. Астрофизик Эмден строил так называемые изотермические сферы, находящиеся в термодинамическом равновесии и противостоящие «тепловой смерти». В 1897 году задача исследования однородной стационарной модели была решена Л. Бьянки, который нашел девять различных типов однородных пространств. Все они являлись пространствами постоянной кривизны и, как пишут С. Шюкинг и О. Гекман, «обладали тем свойством, что любой наблюдатель в любом направлении видит одну и ту же картину мира».
Тем не менее никто из исследователей не сумел построить модель вселенной, не имеющей центра и одновременно свободной от гравитационного и фотометрического парадоксов, а также от термодинамических затруднений.
Теперь автор убежден, что читателю вполне ясна обстановка,
Выход указывала общая теория относительности. Она обобщила ньютонову теорию всемирного тяготения, приведя ее в соответствий с принципом относительности. Правда, при этом геометрия мира оказывалась неэвклидовой. И Эйнштейн пожертвовал этим «китом».
Он предложил вместо бесконечной, стационарной и однородной модели вселенной Ньютона с плоским эвклидовым пространством конечную модель с римановым замкнутым в себя трехмерным пространством (трехмерной сферой), но также однородную и стационарную! Правда, чтобы построить свою модель, Эйнштейну пришлось несколько видоизменить уравнения тяготения, выведенные в общей теории относительности. «Я пришел к убеждению, — писал он, — что уравнения гравитационного поля, которых я до сих пор придерживался, нуждаются еще в некоторой модификации». Дело в том, что единственное стационарное решение уравнений в первозданном виде приводило к плоскому пространству Минковского, что принципиально ничем не отличалось от вселенной Ньютона и представляло собой тривиальный результат.
И вот тогда Эйнштейн вводит в свои уравнения космологический член, связанный с некой постоянной (лямбда), вводит, с трудом решившись на это действие, «не оправданное нашими действительными знаниями о тяготении». Но иного выхода не было!
В ньютоновском приближении наличие космологической постоянной в уравнениях тяготения соответствовало введению дополнительных сил во вселенную. Причем сил, пропорциональных расстоянию. Лямбда очень мала, и потому на небольших расстояниях влияние космологического члена незначительно. Модифицированные уравнения Эйнштейна с лямбда-членом почти ничем не отличаются от исходных. Но совсем другое дело, когда рассматриваемые расстояния приобретают космологические масштабы, то есть становятся равными десяткам или сотням миллионов парсеков…
Потому и называют постоянную космологической постоянной. Силы притяжения, действующие между космической начинкой замкнутой вселенной, пытаются стянуть вещество в единый ком. В уравнении космологический член с больше нуля играл бы ту же роль, что и силы отталкивания, поддерживающие вселенную в равновесии. То же произошло бы и в противном случае. Если представить себе, что вещество вселенной не сжимается, а, наоборот, разлетается в разные стороны, лямбда-член, с меньше нуля станет играть роль дополнительного притяжения, удерживающего вселенную в неизменном состоянии.
«Вновь введенная универсальная константа определяется, если известны средняя плотность распределения (вещества во вселенной) — , сохраняющаяся в состоянии равновесия, а также радиус сферического пространства Rи его объем — 2 2 R 3», — писал Эйнштейн.
Пусть читателя не смущает странная форма записи. Следует помнить, что мы имеем дело с трехмерной сферой четырехмерного пространства-времени. Так привычная нам величина поверхности двухмерной сферы в привычном нам трехмерном мире — 4 R 2— в четырехмерном мире превращается в гиперповерхность и вычисляется по формуле 2 2 R 3.