Живой учебник геометрии
Шрифт:
§ 72. Другие соотношения в прямоугольном треугольнике
1) Устанавливая в предыдущем параграфе зависимость между сторонами прямоугольного треугольника, мы попутно вывели, что (черт. 206)
a2= bq,
c2= bp.
Выражая это соотношение словесно, мы скажем, что
к в а д р а т к а ж д о г о к а т е т а р а в е н п р о и з в е д е н и ю и з г и п о т е н у з ы и п р о е к ц и и э т о г о к а т е т а н а г и п о т е н у з у.
2) Кроме того, из подобия треугольников I и II следует, что
р : h= h: q, где h – высота,
т. е. h (высота)
в ы с о т а, п р о в е д е н н а я к г и п о т е н у з е, е с т ь с р е д н е – п р о п о р ц и о н а л ь н а я м е ж д у о т р е з к а м и г и п о т е н у з ы. Далее, из пропорции р : h = h: q следует, что h2= pq, т. е.
к в а д р а т в ы с о т ы, п р о в е д е н н о й к г и п о т е н у з е, р а в е н п р о и з в е д е н и ю о т р е з к о в г и п о т е н у з ы.
§ 73. Соотношения между отрезками перпендикулярных хорд
Проведем через: какую-нибудь точку окружности (черт. 208) перпендикуляр CDк диаметру АВ. Легко видеть, это этот перпендикуляр есть высота, проведенная к гипотенузе треугольника АСВ, так как угол АСВ – прямой (почему?). Поэтому
AD: DC = DC: DB,
или (DC)2= AD: DB;
другими словами:
п е р п е н д и к у л я р, п р о в е д е н н ы й и з к а к о й – н и б у д ь т о ч к и о к р у ж н о с т и к д и а м е т р у, е с т ь с р е д н е – п р о п о р ц и он а л ь н о е м е ж д у о т р е з к а м и д и а м е т р а. Этим свойством можно пользоваться, между прочим, в тех случаях, когда требуется построить к двум данным отрезкам средне-пропорциональный. Если данные отрезки а и l и требуется найти отрезок х такой длины, чтобы
а : х = х : l,
то откладывают рядом а и l (черт. 209), строят на АС, как на диаметре, полуокружность и из точки В восставляют перпендикуляр до пересечения с окружностью в точке D: отрезок BD = x.
Повторительные вопросы к §§ 71–73
Какое вы знаете соотношение между катетами и гипотенузой? – Между гипотенузой, катетом и его проекцией на гипотенузу? – Между высотой, проведенной к гипотенузе, и отрезком гипотенузы? – Между перпендикуляром, проведенным из точки окружности к диаметру и отрезками диаметра? – Что значит: найти? средне-пропорциональное между двумя отрезками? Как это сделать?
Применения
91. Чтобы определить
Р е ш е н и е. Надо измерить расстояния ВС и ВD. Расстояние АВ оп-редется из равенства:
(BC)2= AB?BD,
откуда
AB = (BC)2/BD
92. Начертить квадрат, равновеликий данному треугольнику с основанием а высотою h.
Р е ш е н и е. Задача сводится к отысканию стороны квадрата такой длины х, чтобы x2= ?ah, т. е., чтобы a/2: х = х : h.
Отсюда видно, что искомый отрезок средне-пропорциональное между a/2 и h.
93. Найти стрелку h дуги (черт. 211) радиуса R, если длина стягивающей хорды = a.
Р е ш е н и е. Стрелкой дуги называется прилегающий к ней отрезок радиуса, перпендикулярного к стягивающей ее хорде, между хордой и дугой.
Половину хорды a/2 можно рассматривать, как перпендикуляр, проведенный из точки окружности к диаметру. Поэтому
(a/2)2h?[2R-h], или: h2-2Rh + a2/4 = 0
Искомую величину стрелки h можно вычислить из этого квадратного уравнения. Если стрелка, как часто бывает, весьма мала по сравнению с радиусом круга, то членом h2можно пренебречь, и тогда h приближенно равно a2/8R. По этой формуле вычисляют, например, стрелку дуги железнодорожного закругления, радиус которого достигает 1000 метров и больше, стрелка же не превышает нескольких, метров.
Сходным образом решается и обратная задача: вычисление радиуса закругления по длине хорды и стрелки, как видно из следующего примера.
94. Вычислить радиус кривизны часового стекла, поперечник которого 60 мм, а стрелка дуги – 3 мм.
Р е ш е н и е. Подставив значения aи hв уравнение, выведенное в предыдущем примере:
h2-2Rh + a2/4 = 0
получаем
0,32-2R?0,3 + 9 = 0.
Отсюда R = около 6 см.
§ 74. Длина касательной
Пусть требуется определить длину касательной к (черт. 212), если радиус круга R, а кратчайшее расстояние от начала касательной до окружности – b. Проведя радиус к точке касания, имеем прямоугольный треугольник, в котором