Жизнь без старости
Шрифт:
Начнем с непокорного и со всех сторон исключительного голого землекопа. Действительно, у него при достаточно интенсивной продукции АФК удивительно большая продолжительность жизни. Но как вы, наверное, помните из главы 1.4, голый землекоп стал звездой современной биологии потому, что он НЕ стареет! То есть, по нашему мнению, у него сломана программа старения. Поломка произошла где-то после АФК, и именно потому ему не страшны даже повышенные концентрации АФК.
Но коварный голый землекоп, тем не менее, все же «подкопал» любимую нами теорию. Внимательный и критически настроенный читатель, прочитав наше объяснение, спросит: ну а как, собственно, работает эта ваша программа старения после того, как произошло повышение концентрации АФК? Что там у землекопа не работает, но работает у большинства остальных млекопитающих, включая и нас с вами? На этот вопрос
Но вернемся к более прозаичным вещам. Второй основной контраргумент против «теории АФК» — это неудачи при попытках применения антиоксидантов как средств против старения. Казалось бы, антиоксиданты, то есть вещества, которые нейтрализуют АФК и предотвращают их разрушительное окислительное действие на другие молекулы, — идеальный кандидат на роль «лекарства от старости». В чем же дело?
Во-первых, дело в том, что АФК не только выжигают липиды, портят ДНК и белки клетки и творят прочие непотребства, но также выполняют ряд жизненно важных функций. За сотни миллионов лет эволюции организмы привыкли жить в кислородной атмосфере с ее непременными спутниками — АФК. Более того, для многих из них сегодня жизнь без АФК уже невозможна. Интересный опыт поставил сотрудник МГУ Н.И. Гольдштейн. Он пропустил воздух между двумя пластинами магнита, улавливающими так называемые «отрицательные аэроионы», а именно молекулы аниона супероксида — предшественника почти всех АФК, образуемых в клетках человека и животных. Оказалось, что воздух без супероксида смертелен! Дыша таким воздухом, мыши погибали на 18-й день, а крысы — на 22-й. Смерть можно было предотвратить даже краткими, но регулярными сеансами дыхания обычным (не очищенным от супероксида) воздухом. Вряд ли супероксид воздуха служит грызунам реальным источником АФК. Простой расчет показывает, что та же мышка или крыса сама образует гораздо больше супероксида, чем они смогут получить через легкие из воздуха. По-видимому, речь идет о каком-то сигнале бедствия, который возникает при исчезновении супероксида из вдыхаемого воздуха. Интересно, что уровень супероксида измеряется не обычными обонятельными луковицами, а особыми рецепторами, находящимися тоже в носу, но в его специальной части — вомероназальном органе, ответственном за восприятие особо важных запахов (в частности, феромонов).
Нечто вредное для индивида не может быть выбраковано естественным отбором, так как оно же оказывается действующим ЛИЦОМ ДРУГОЙ, жизнеутверждающей пьесы. Поэтому применение обычных антиоксидантов, тем более
В УДАРНЫХ ДОЗАХ, МОЖЕТ ПРИВОДИТЬ К РАЗБАЛАНСИРОВКЕ ЖИЗНЕННО ВАЖНЫХ ФУНКЦИЙ.
Показано, что небольшие концентрации АФК зачем-то необходимы для деления клеток, процессов дифференцировки стволовых клеток в специализированные клетки соответствующих тканей и еще целого ряда нормальных проявлений жизнедеятельности и, в частности, синаптической пластичности и познавательной деятельности мозга. Большие концентрации АФК используются как «биологическое оружие» в борьбе фагоцитов с патогенными бактериями. Таким образом, наряду с мрачной функцией АФК как участников самоубийства отдельной клетки или даже индивида эти же самые вещества, оказывается, необходимы для организма. Здесь мы вновь сталкиваемся с ситуацией, уже рассмотренной выше, когда нечто вредное для индивида не может быть выбраковано естественным отбором, так как оно же оказывается действующим лицом другой, жизнеутверждающей пьесы. Поэтому применение обычных антиоксидантов, тем более — в ударных дозах, нередко приводит к разбалансировке жизненно важных функций.
Другая проблема заключается в том, что обычные антиоксиданты не достигают главного источника АФК в клетке — митохондрий. Ведь клетка отделена от внешней среды жирной липидной мембраной, а митохондрии отделены от остального клеточного содержимого еще двумя мембранами. Липидные мембраны плохо проницаемы для антиоксидантов, растворимых в воде, например аскорбиновой кислоты. А жирорастворимые антиоксиданты, наоборот, скапливаются в липидных мембранах, но, помимо мембраны митохондрий, попадают и во все прочие мембраны клетки, а также в жировую ткань. В результате для эффективного действия требуются высокие концентрации антиоксиданта, а его неспецифическое накопление во всех мембранах клетки и в жировых депо приводит к серьезным побочным отрицательным эффектам.
Было БЫ ЗДОРОВО НАЙТИ ТАКОЙ АНТИОКСИДАНТ, КОТОРЫЙ ПРОНИКАЛ БЫ СКВОЗЬ КЛЕТОЧНЫЕ МЕМБРАНЫ И ПОПАДАЛ ИМЕННО В МИТОХОНДРИИ.
Было бы здорово, скажете вы, чтобы нашелся такой антиоксидант, который бы мог проникать сквозь клеточные мембраны и попадать именно в митохондрии. В этом случае он не затрагивал бы важных для жизни функций АФК, и можно было бы избирательно и аккуратно регулировать «токсичные выбросы митохондрий», не нарушая баланса АФК в других местах. Вот тогда бы мы и увидели, чего стоит эта самая «теория АФК». Спешим вас обрадовать: есть такой антиоксидант! И даже не один, а целая палитра. Только он не сам нашелся, его придумали биохимики. Кто, когда и как — читайте в следующей главе.
ГЛАВА 1.7
Что делать, чтобы не стареть?
Если вы читаете эту главу, значит, мы можем вас поздравить — скоро вы поймете, чем эта книга отличается от всех остальных книг о старении, которые бывают весьма увлекательными, стройно доказывающими ту или иную теорию, полны интересными примерами и обескураживающими вычислениями. Но книги лучших геронтологов всегда оставляют открытым самый главный вопрос — «Ну и что?». То есть ваш рассказ был чудесен, увлекателен, но к чему все это? Что делать-то, чтобы не стареть? В ответ — либо молчание, либо набор очень правильных банальностей: поменьше пить, не курить, не ходить «налево», не забывать о физической нагрузке. Замечательно! То есть смысл обычной книги про старение — рассказать про то, как автору было интересно заниматься этой проблемой и при всем при этом ничем не помочь стареющему читателю. Нечего удивляться после этого, что геронтологические исследования так плохо финансируются.
Авторы этой книги не являются профессиональными геронтологами. Мы трудимся в сферах биофизики, биохимии и молекулярной биологии, то есть в чистом виде экспериментаторы. Это значит, что для нас бессмысленна любая теория, гипотеза, которую нельзя проверить экспериментом. Дело в том, что биология еще настолько молодая наука, что мы в подавляющем количестве случаев не можем ничего доказать строго. Системы, с которыми работают биологи, настолько сложны и плохо изучены, что у любого факта, результатов любого опыта может быть несколько объяснений, порой — взаимоисключающих. Физики-теоретики и математики тут, наверное, схватились за голову — и это вы называете наукой? Если толком ничего нельзя доказать, то какие вообще могут быть критерии правильности вашей работы?
На самом деле все очень просто: гипотеза должна что-то предсказывать. То есть, сформулировав предположение, вы на ее основе утверждаете, что такие-то эксперименты должны дать такие-то результаты. Далее ставятся соответствующие опыты, и если результаты совпадают с предсказанными, то вы правы, и можно двигаться дальше в доказательстве вашей схемы. Вот так устроена современная биология и опирающаяся на нее «доказательная медицина».
А теперь сформулируем, что предсказывает схема, которую мы вам изложили в предыдущих главах.
1) Отдельные клетки и организмы могут умирать не спонтанно, а следуя заложенной в них генетической программе.
2) Старение, судя по всему, является одной из таких программ медленного самоубийства. При этом у некоторых видов живых существ ее нет — они не стареют. Хотя все организмы в итоге умирают: вечная молодость еще не означает вечную жизнь! Людям не повезло — у нас программа старения есть и пока работает.
3) Есть все основания полагать, что старение млекопитающих, в том числе и людей, устроено через медленное отравление собственного организма какой-то «гадостью», которую этот организм сам и производит.
4) Лучшие кандидаты на роль этой «гадости» — активные формы кислорода (АФК), причем не все, а именно те, что вырабатывают «электростанции» наших клеток — митохондрии.
Эксперимент напрашивается сам собой — так давайте уменьшим производство АФК в митохондриях клеток нашего организма и посмотрим, не замедлится ли старение? Сказано — сделано!
Итак, мы решили уменьшить количество митохондриальных АФК и посмотреть — не станем ли мы от этого дольше сохранять молодость. А теперь нам придется объяснить вам, какая огромная работа необходима для этого эксперимента и почему до самого последнего времени он был принципиально невозможен.