Журнал «Вокруг Света» №02 за 2006 год
Шрифт:
Большинство получаемых ими кристаллов (желтые, желто-коричневые алмазы) содержат в своей кристаллической решетке значительное количество одиночных атомов азота. Азот растворяется в расплавленном металле и активно захватывается растущим кристаллом. Привлекательность азотсодержащих кристаллов для выращивания обусловлена тем, что при прочих равных условиях скорость их кристаллизации существенно выше, чем скорость роста высокочистых по азоту монокристаллов алмаза.
К настоящему времени самым крупным рукотворным азотсодержащим алмазом является кристалл технического качества (из-за наличия крупных металлических включений)
Разворачивание рентабельного промышленного производства крупных (более 10 карат) алмазов ювелирного качества сегодня вполне реально. Однако угрозой мировым продажам бриллиантов такое производство, скорее всего, не станет, поскольку ему найдут иное научно-технологическое применение, оставив цены на бриллианты на должном уровне. Кроме того, себестоимость добычи природных камней и производства алмазов в прессах не слишком сильно отличается, а количество пригодных для огранки искусственных камней пока и близко несопоставимо с количеством алмазов, добываемых из недр.
Химическая обработка
В ювелирной промышленности широко применяется способ кислотной обработки алмазов и бриллиантов. Процесс проводится в автоклавах, покрытых танталом, и заключается в кипячении алмазов в смеси соляной и азотной кислот при температуре 200°—250°С и давлении 0,5—1,0 МПа в течение 1—5 часов. В некоторых случаях для доступа кислот к закрытым включениям в алмазе при помощи лазера прожигаются каналы. Затем эти полости заполняют затвердевающими прозрачными жидкими и гелеобразными веществами, имеющими коэффициент преломления, близкий к коэффициенту преломления алмаза.
Радиационная обработка
В 1905 году, вскоре после открытия явления радиоактивности, английский ученый Уильям Крукс, будущий президент Лондонского королевского общества, обнаружил изменение окраски кристаллов алмаза, контактировавших с бромидом радия. В настоящее время для облучения алмазов используются ускоренные электроны с энергией 2—4 МэВ (кристаллы, подвергнутые данной обработке, не являются радиоактивными). Получаемые цвета колеблются от зелено-голубого до черного. В дальнейшем, после облучения, подвергнув алмазы нагреву в бескислородной среде до 700°—1 100°С, возможно более широкое изменение их цвета до зеленого, желтого, голубого, розового, красного, фиолетового и черного.
Термобарическая обработка
На воздухе при атмосферном давлении алмаз начинает превращаться в графит при 750—850°С. Однако, размещая образец алмаза в рабочем пространстве аппарата высокого давления, его можно нагреть до 1 800°—2 500°С (не боясь, что он целиком превратится в графит) и тем самым повлиять на окраску кристалла. Такая технология, используемая в подмосковном Троицке, позволяет из менее привлекательных коричневых природных кристаллов делать бесцветные, розовые, зеленые, желтые, оранжевые и голубые алмазы.
Следы вмешательства
Следует заметить, что кристаллы, подвергнутые любой из «облагораживающих» обработок, могут быть распознаны при наличии необходимого оборудования и достаточной квалификации персонала, так же как и искусственные алмазы, выращенные в лабораторных условиях. Компания «Де Бирс», устанавливающая порядки в ювелирной промышленности, очень внимательно относится к возможной конкуренции со стороны промышленно выращиваемых алмазов. Ее специалисты разработали ряд приборов и методик для определения параметров — где, как и из чего был изготовлен тот или иной бриллиант. Так что выдать выращенный алмаз за природный почти невозможно. Делая ставку на природное сырье, «Де Бирс» полагает, что в ближайшие десятилетия ей удастся удержать высокие цены на свои изделия, в частности благодаря тому, что они будут гарантированно настоящие…
Управляемый синтез
Однако уникальные свойства алмаза в полной мере проявляются лишь в так называемых «малоазотных» кристаллах (содержание азота менее 1018 атомов/см3). Предотвратить вхождение атомов азота в решетку алмаза можно путем введения в ростовую среду дополнительных веществ, так называемых «геттеров» азота (титана, циркония, алюминия), связывающих азот в устойчивые нитриды. Однако при этом, как правило, идет параллельное взаимодействие геттеров с углеродом и образование карбидов, которые активно захватываются растущим кристаллом в виде макро- и микровключений и ухудшают его качество.
Данная проблема решается путем подбора элементов конструкции той части установки высокого давления, где происходит рост кристалла, и оптимизацией термодинамических условий роста (давление, температура) и скорости кристаллизации. В настоящий момент максимальный темп роста «особо чистых» монокристаллов алмаза составляет 6—7 мг/ч, а получаемые кристаллы могут иметь вес 7—9 каратов (1,4—1,8 грамма).
В процессе роста также возможно управляемое легирование кристалла оптически и электрически активными примесями (азотом, бором), входящими в решетку алмаза и замещающими в ней отдельные атомы углерода. Наиболее часто алмаз легируют бором, отвечающим за голубую его окраску и полупроводниковые свойства.
Созданные в подмосковном городе Троицке технологии выращивания крупных монокристаллов алмаза (весом до 5 каратов) позволяют управлять концентрацией примесного азота в диапазоне от 1019 до 1016 атомов/см3 и выращивать полупроводниковые монокристаллы p-типа с широким диапазоном удельного электрического сопротивления — от 0,1 до 1013 Ом.см. Возможно также получение слоистых алмазных структур с изменяющимися по толщине оптическими и электрофизическими свойствами. Из выращиваемого сырья изготавливают алмазные наковальни, позволяющие вести исследования свойств веществ и фазовых переходов в них при сверхвысоких давлениях до 2,5 Мбар (около 2,5 миллиона атмосфер). А также производят оптические окна для особо мощных лазеров, высокочувствительные датчики температуры, малоинерционные нагревательные элементы, иглы для сканирующих зондовых микроскопов, датчики ультрафиолетового, рентгеновского и радиационного излучений.
Выращиваемые сегодня в лабораторных и промышленных масштабах сверхчистые и легированные заданными примесями монокристаллы алмаза стоят существенно дороже природных образцов и производятся не для того, чтобы делать из них бриллианты. Особый интерес к данному материалу в последнее время обусловлен не только потребностями экспериментальной физики, но и наметившейся возможностью разработки алмазной электроники. Алмазные микросхемы пока живут только в мечтах физиков-теоретиков, но реальные технологи-практики активно работают над тем, чтобы выращенные в лабораториях ученых кристаллы алмаза были не только чистой воды, но и заданной полупроводящей микроструктуры.