Чтение онлайн

на главную

Жанры

Знание-сила, 2002 № 10 (904)
Шрифт:

Как проказали расчеты Хокинга и Пенроуза, вселенная в начальный момент должна была представлять собой не комок вещества определенных размеров, а лишенную размеров особую точку или, как говорят, сингулярность. Особость этой сингулярности состояла в том, что плотность вещества и энергии в ней должна была достигать бесконечности (поскольку размеры ее были равны нулю).

А все уравнения теории Эйнштейна при бесконечных значениях плотности и энергии становятся бессмысленными – физика «исчезает», она более не применима. Мало этого – в такой сингулярности исчезают сами время и пространство. Получается угрюмая картина: вселенная

рождается из «нуля», ускоренно расширяется, порождая галактики и другие скопления вещества космических масштабов, и постепенно раздувается до бесконечности, так что плотность вещества устремляется к нулю – и вселенная «сходит на нет», умирает.

Новая теория, предложенная упомянутым Стейнхардтом в сотрудничестве с Нейлом Туроком и другими коллегами, обходит все эти трудности – но ценой полного отказа от привычных представлений о природе вселенной. Начало этому отказу было положено уже давно, в 1920-е годы, когда два физика, Калуца и Клейн, задумали построить теорию еще более общую, чем общая теория относительности, -такую, чтобы ее уравнения описывали не только гравитационное, но и электромагнитное поле. Они показали, что это можно сделать, если считать вселенную не четырех-, а пятимерной (четвертое измерение нашей вселенной – это время). Пятое (пространственное) измерение в такой вселенной оказалось «скрученным само на себя», подобно туго свернутому листу бумаги, который при таком сворачивании становится тонкой трубочкой. Если мысленно вообразить себе такую тонкую трубочку, что, глядя ей в торец, мы видим не кружочек, а практически точку, это и будет аналог «свернутого» пятого измерения в теории Калуцы-Клейна.

Казалось бы, что толку от такого, практически несуществующего измерения? Оказывается, теоретический толк от него громаден. Уравнения Эйнштейна-Максвелла, переписанные для пяти измерений, немедленно привели к предсказанию закона сохранения электрического заряда и к другим содержательным физическим выводам. Но в теории были свои затруднения (она, например, предсказывала, что гравитационная постоянная в законе Ньютона должна меняться со временем), и поэтому она была заброшена.

В наше время, когда были обнаружены и другие силы природы, кроме гравитационных и электромагнитных, снова возникло стремление найти уравнения, из которых следовали бы законы, управляющие всеми силами сразу. Наиболее далеко в этом направлении продвинулась теория суперструн. В ее основе лежит представление о микрочастицах вещества как о тончайших и крохотных струнах, находящихся под огромным натяжением (оно соответствует энергии частиц).

Эта теория, как и теория Калуцы-Клейна, тоже оказалась способной объединить законы различных физических взаимодействий в единых уравнениях, но платить за это и здесь пришлось переходом к многомерному, на сей раз десятимерному, пространству (девять измерений которого пространственны, а десятое – время). Поскольку шесть новых измерений мы ни увидеть, ни обнаружить не в состоянии, пришлось предположить, что все они тоже свернуты в «трубку» крайне малой толщины – в первых вариантах теории эта толщина была порядка мельчайшей пространственной единицы, так называемой планковской длины (10“33 сантиметра). В последние годы, однако, на смену исходной теории суперструн пришло ее обобщение, именуемое М-теорией (некоторые энтузиасты расшифровывают это название как «Материнская теория», то есть теория, из которой следует «все остальное»). В ней пространство уже одиннадцатимерно, причем одиннадцатое измерение – это некое расстояние, которое может быть очень большим (оно не «свернуто»).

Поскольку та космологическая гипотеза, с которой мы начали статью, построена как раз на основе М-модели, скажем коротко, как выглядит мир (космос) в этой теории. Это 11-мерный мир, 6 пространственных измерений которого свернуто в трубку, но, возможно, не так туго, как думалось раньше, вплоть до того, что, возможно, глядя на эту трубку в торец, мы увидим не точку, а кружок диаметром до миллиметра! (Это, кстати, уже можно надеяться обнаружить и экспериментально.) Вешество, из которого мы состоим, и все силы, кроме гравитационной, сосредоточены в обычных четырехмерных «малых вселенных», каждая из которых представляет собой что-то

вроде «листа» с толщиной, равной толщине, до которой свернуты остальные 6 измерений.

Эти листы-вселенные называются 3-брэйн (З-brane), и они разделены неким расстоянием вдоль одиннадцатого измерения. Для наглядности можно себе представить две такие «малые вселенные» просто как две дощечки небольшой толщины, параллельные друг другу, подобно пластинам конденсатора (нужно только иметь в виду, что «дощечки» эти имеют 4 измерения: если их высота соответствует оси времени, то ширина – сразу всем обычным пространственным измерениям).

Теперь мы готовы понять, какую идею выдвигают Стейнхардт и Турок и к каким выводам она приводит. Эти авторы говорят, что гравитационная сила действует не только в пространстве каждого 3-брэйна, но и между ними. Поэтому два соседних «листа» притягиваются друг к другу и, обладая массой (ведь в каждом из них есть вещество), набирают огромную кинетическую энергию. По истечении какого-то громадного времени они «соударяются», что приводит к моментальному превращению всей этой накопленной энергии в тепло. Под воздействием этого тепла, выделившегося внутри каждого «листа», образующая его «малая вселенная» начинает раздуваться (это можно представить себе как растяжение четырехмерного листа во все стороны: увеличение его «ширины» соответствует чисто пространственному, «хаббловскому» расширению «малой вселенной», а рост его «высоты» соответствует нарастанию времени с момента столкновения).

Иными словами, столкновение двух «листов» ведет к тем же результатам, что привычный нам Биг Бэнг. «Это и есть Биг Бэнг, – говорят авторы, – только без всяких сингулярностей, без всякого стягивания «малой вселенной» в точку».

Что дальше? Представим себе, что перед столкновением в каждой «малой вселенной» практически не было вещества. Тогда энергия, выделившаяся в момент столкновения, начинает превращаться в частицы, которые самым случайным образом заполняют все пространство «листа». В каких-то местах этих частиц случайно больше, и такие микросгустки (квантовые флуктуации плотности) становятся «ядрами конденсации», на которых нарастает все больше и больше вещества, пока не образуются галактики и скопления галактик.

Возникает привычная нам картина нашей вселенной, в которой недостает только одного фактора – ее ускоренного расширения. Чтобы учесть и этот экспериментальный факт, авторы постулируют, что в одиннадцатом измерении между «листами» действует некое поле, которое, проникая в листы, играет роль силы, ускоряющей их растяжение (то есть ускоренное расширение находящихся в каждом «листе» малых вселенных). Действие этого поля между «листами» выглядит, по расчетам авторов, как действие гигантской «пружины». Когда две малые вселенные слишком близки друг к другу (непосредственно после соударения), пружина их расталкивает, когда далеки – притягивает.

Что это за «пружина», что является ее источником, авторы пока объяснить не могут. Но если мы примем, что межлистовое поле действует именно так, то понятно, что по истечении огромного времени разошедшиеся «листы-вселенные» снова должны начать сближаться для следующего соударения. К этому моменту за счет ускоренного расширения каждой из них вещество в них практически распалось «до нуля», то есть они снова практически «пусты». Очередной Биг Бэнг опять наполняет их зародышами будущих галактик и снова расталкивает оба «листа». Эти периодические столкновения, подобно ударам гигантских медных тарелок в оркестре, задают каждой малой вселенной ее бесконечную во времени историю: Биг Бэнг – образование вещества и ускоренное расширение – полный распад вещества с приближением вселенной к «тепловой смерти» – новый Биг Бэнг – и так без конца. Эту циклическую историю всякой вселенной Стейнхардт и Турок назвали «экпиротической», от греческого «рожденная в огне».

Даже не понимая математики, стоящей за этими построениями, нельзя не оценить дерзкий размах этой картины. Впрочем, она уже подверглась критике со стороны других космологов, так что относиться к ней следует именно как к гипотетической. Это не совсем «кратчайшая история космоса» – эго, точнее, лишь «возможная кратчайшая история космоса». Но – очень интересная. Даже захватывающая.

Ал Бухбиндер.

Поделиться:
Популярные книги

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Кровь Василиска

Тайниковский
1. Кровь Василиска
Фантастика:
фэнтези
попаданцы
аниме
4.25
рейтинг книги
Кровь Василиска

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Восход. Солнцев. Книга IX

Скабер Артемий
9. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IX

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Кукловод

Злобин Михаил
2. О чем молчат могилы
Фантастика:
боевая фантастика
8.50
рейтинг книги
Кукловод

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит