Звезды: их рождение, жизнь и смерть
Шрифт:
Глава 22 О теории пульсаров
После того как в предыдущих параграфах было рассказано об основных наблюдательных фактах, касающихся пульсаров, уместно перейти к обсуждению существующих теорий. В какой-то степени мы уже осветили раньше теоретический аспект проблемы пульсаров, когда обсуждалось их отождествление с быстро вращающимися нейтронными звездами. Несомненно, что это отождествление является выдающимся достижением современной астрономии. Но, конечно, мало доказать, что пульсары — это быстро вращающиеся нейтронные звезды. Необходимо понять причину их фантастически мощного электромагнитного излучения. Этот вопрос имеет принципиальное значение. Хотя феномен нейтронной звезды теоретически известен астрономам вот уже 40 лет, полной неожиданностью оказалась невероятно высокая активность этих объектов.
В § 19 уже говорилось, что спустя свыше 30 лет после теоретического обоснования необходимости существования нейтронных звезд и незадолго до открытия пульсаров Пиддингтон, Кардашев и вслед за ними Пачини пришли к выводу, что нейтронные звезды должны быстро вращаться и быть сильно намагниченными. Но каким же образом все-таки излучает радиоволны такой объект? Этот вопрос оказался далеко не простым. Надо прямо сказать, что на сегодняшний
Итак, нерешенных проблем в физике нейтронных звезд более чем достаточно. Поэтому, освещая современное состояние теории пульсаров, мы будем останавливаться только на самых простых и хорошо апробированных положениях. Заметим, однако, что даже и здесь отсутствует единство взглядов ученых и однозначность в истолковании результатов наблюдений.
Прежде всего следует сказать хотя бы несколько слов об ожидаемых теоретических свойствах нейтронных звезд. Сама возможность существования нейтронных звезд как стабильных конфигураций, находящихся в состоянии равновесия под действием сил гравитации и давления, была высказана еще в 1934 г. американскими астрономами Цвикки и Бааде, которые предположили, что нейтронные звезды образуются при вспышках сверхновых звезд. Долгие годы после этого было совершенно не ясно, образуются ли действительно нейтронные звезды или они представляют собой только изящную математическую конструкцию. Между тем теоретики продолжали исследовать сверхплотное состояние звездного вещества. Уже давно стало ясно, что гипотетические нейтронные звезды не могут представлять собой однородной конфигурации, другими словами, физическое состояние нейтронной звезды должно меняться от ее периферии к центру. Нельзя также считать, что вещество такой звезды состоит только из очень плотно упакованных нейтронов. Во всей ее толще в качестве «примеси» к нейтронам должны быть протоны и электроны. Вблизи поверхности должны доминировать тяжелые ядра, а в самых центральных областях — сверхтяжелые элементарные частицы — гипероны, которые в условиях лабораторных экспериментов крайне нестабильны. Выяснилось, что эти ядра в наружных слоях нейтронной звезды должны образовывать кристаллическую решетку, т. е. периферия нейтронной звезды представляет собой твердое тело. Между тем внутренние ее слои должны представлять собой сверхтекучую жидкость.
|
Рис. 22.1: Схема внутреннего строения нейтронной звезды. |
Следует подчеркнуть, что при построении модели нейтронной звезды теоретики столкнулись с большими трудностями, связанными главным образом с недостаточностью наших знаний о природе ядерных сил, действующих между частицами, образующими нейтронную звезду. Тем не менее «полукачественную» модель нейтронной звезды все же удалось построить. На рис. 22.1 схематически показана стратификация вещества в нейтронной звезде, как она представляется в настоящее время. Вблизи поверхности вещество состоит главным образом из очень плотно «упакованных» ядер железа. Кроме того, там имеется сравнительно небольшое количество ядер гелия и других легких элементов, а также очень плотный вырожденный электронный газ, подобный тому, какой имеется в недрах белых карликов (см. § 10). Присутствие электронов необходимо для компенсации положительного объемного заряда ядер. По мере продвижения в глубь нейтронной звезды ее плотность растет и электроны как бы «вдавливаются» в ядра. При этом образуются богатые нейтронами ядра, более тяжелые, чем ядра железа. При плотности вещества около 3
Недостаточность знаний физических условий в самых центральных областях нейтронных звезд делает пока далекими от совершенства их модели, т. е. построение теоретической зависимости радиусов нейтронных звезд от их массы. Тем не менее кое-какие результаты теоретиками уже получены. Например, оказалось, что чем меньше масса нейтронной звезды, тем больше ее радиус.
В этой связи следует подчеркнуть, что теория еще не может указать на область допустимых значений масс нейтронных звезд, хотя большая часть специалистов полагает, что массы их должны быть сравнительно невелики, в пределах 0,15
|
Рис. 22.2: Теоретическая зависимость радиуса и момента инерции нейтронных звезд от их массы. |
На рис. 22.2 приведена од на из существующих моделей нейтронных звезд, дающая зависимость их радиуса от массы. Для масс больших, чем 1M
Большой интерес представляют уже упоминавшиеся в предыдущем параграфе «звездотрясения», т. е. скачки в периоде пульсаров PSR 0831—45 (Паруса X) и NP 0531 (Краб). У первого пульсара наблюдались два таких скачка, разделенных промежутком времени больше двух лет, причем относительное изменение периода достигало 10– 6. У NP 0531 такие скачки значительно меньше. Вероятнее всего «звездотрясения» связаны со скачкообразным изменением момента инерции вращающейся нейтронной звезды. Такое изменение может быть достигнуто, если нейтронная звезда уменьшает свой радиус на величину
Из-за быстрого вращения равновесной конфигурацией нейтронной звезды должна быть фигура, близкая к эллипсоиду вращения. Но вследствие непрерывного замедления вращения должны меняться параметры этого эллипсоида (он должен становиться все менее сплюснутым). Однако жесткость твердой «коры» нейтронной звезды препятствует «плавному» изменению ее фигуры. По этой причине в коре накапливаются упругие натяжения, и после достижения предела прочности происходит скачкообразная деформация коры, носящая характер сдвига. Таким образом, изучение «звездотрясений» позволяет глубже понять свойства нейтронных звезд.
На рис. 22.2 приведена также теоретически рассчитанная характеристика нейтронной звезды — ее момент инерции I, определяющий кинетическую энергию вращения (E =
Из наблюдаемого увеличения периодов пульсаров со временем можно получить
Скорость уменьшения кинетической энергии вращения пульсара
| (22.1) |
Первая задача физики пульсаров — понять, почему вращающиеся нейтронные звезды тормозятся, тем самым непрерывно выделяя энергию. Простейшее объяснение этого явления сводится к тому, что нейтронные звезды сильно намагничены. Тогда вращающаяся нейтронная звезда, находящаяся в вакууме, будет излучать магнитно-дипольное излучение, частота которого равна частоте вращения, а мощность определяется формулой