Звезды: их рождение, жизнь и смерть
Шрифт:
В процессе оседания газа в черную дыру температура внутренних частей диска станет очень высокой. Такой диск может быть мощным источником рентгеновского излучения. Мощность и спектр излучения в первом приближении такие же, как и от нейтронных звезд — рентгеновских пульсаров. Разумеется, рентгеновское излучение при аккреции газа на черную дыру не может носить характер строго периодических импульсов (как у Геркулеса Х-1 и Центавра Х-3). Но ведь далеко не все рентгеновские пульсары — нейтронные звезда — излучают «секундные» импульсы. Этому может, например, помешать сильное рассеяние или «неблагоприятная» (по отношению к земному наблюдателю) ориентация оси вращения нейтронной звезды. В то же время рентгеновский источник — горячий компактный диск, вращающийся вокруг нейтронной звезды, может из-за своего орбитального движения вокруг «оптической компоненты» периодически затмеваться точно так же, как и рентгеновский пульсар.
Таким образом, в принципе, среди рентгеновских источников — компонент тесных двойных систем могут быть и черные дыры. Решающий тест, позволяющий отличить черную дыру от нейтронной звезды, состоит в определении массы такого рентгеновского источника. К сожалению, эта задача оказывается далеко не простой. Из зависимости лучевых скоростей оптической звезды от времени, вызванной ее орбитальным движением вокруг центра тяжести системы, можно получить только функцию масс (см. § 1), но отнюдь не массу «невидимого» рентгеновского источника. Если бы рентгеновский источник имел пульсирующую строго периодическую компоненту, то в сочетании с анализом кривой лучевых скоростей оптической компоненты можно было бы определить
|
Рис. 24.1: Схема, поясняющая вариации лучевых скоростей линии Не II 4486 в «антифазе» с линиями поглощения оптической компоненты системы. |
Уже несколько лет обсуждается возможность того, что яркий рентгеновский источник Лебедь Х-1 обусловлен черной дырой. Как известно, этот источник надежно отождествляется с яркой звездой класса В, у которой длины волн спектральных линий меняются с периодом 5,6 дня. И вот появилось сообщение, что длина волны линии излучения ионизованного гелия в спектре этой звезды меняется с тем же периодом, но с противоположной фазой. Если бы эти наблюдения подтвердились, то естественно было бы считать, что эта линия излучения возникает не в атмосфере «оптической» звезды, а в газовой струе около рентгеновского источника или в окружающем его диске. Тогда понятно, почему изменения лучевых скоростей этой линии противоположны по фазе изменениям лучевых скоростей других линий (рис. 24.1). Из измеренного отношения амплитуд лучевых скоростей, как легко понять, непосредственно находится отношение масс. Так как масса оптической звезды класса В около 20M
С проблемой сверхмассивных черных дыр должна быть тесно связана общая проблема активности ядер галактик и квазаров, которой уделялось так много времени в астрономии в течение последнего десятилетия.
Теперь настала пора поговорить о приеме гравитационного излучения как методе обнаружения коллапса звезд. Но прежде всего читатель должен получить хотя бы самое общее представление о гравитационных волнах.
|
Рис. 24.2: Схема гравитационного квадруполя. |
Из закона всемирного тяготения Ньютона следует, что гравитационная сила убывает с расстоянием как r– 2. Заметим, однако, что вызывающее притяжение тело предполагается при этом точечным либо сферическим. Представим себе теперь, что притяжение вызывают массы, движущиеся в пределах области, размеры которой малы по сравнению с расстоянием до точки наблюдения. В этом случае мы можем разделить силу притяжения в точке наблюдения на две части. Первая часть, являющаяся главной, равна GM/r2, где M — сумма масс тел, а r — расстояние от точки наблюдения до центра тяжести системы масс, вызывающих притяжение. Вторая часть силы притяжения носит характер небольшой добавки и зависит от относительного расположения масс. Можно показать, что по порядку величины эта «добавка» равна GMa2/r4. На рис. 24.2 приведена простейшая схема, иллюстрирующая сказанное. Дополнительная сила в этом случае равна
Обратим теперь внимание на то, что в поле тяготения регистрирующие приборы могут измерять только относительные ускорения, т. е. разность ускорений в двух точках. Относительное ускорение от точечного или сферически-симметричного тела меняется с расстоянием как 1/r3 — это хорошо известное выражение для приливных сил. Квадрупольная составляющая гравитации от системы тел или несимметричного тела вызывает относительное ускорение, равное
Релятивистская теория тяготения в этом пункте радикально расходится с ньютоновской. Согласно общей теории относительности для r > ct (где t — характерное время изменения квадрупольного момента, например, период орбитального движения двойной системы звезд или период осевого вращения несимметричного тела), относительное ускорение, обусловленное квадрупольным моментом, меняется не как r– 5, а как r– 1. При этом, если изменение со временем квадрупольного момента носит периодический характер, фаза этих относительных ускорений смещена на величину r/cr. Все это означает, что меняющийся со временем квадрупольный момент гравитирующего тела (или системы тел) создает на больших расстояниях специфическое гравитационное поле, имеющее характер распространяющейся со скоростью света волны. Можно показать, что гравитационные волны поперечны и поляризованы.
Принципиальное различие между эйнштейновской и ньютоновской теорией тяготения ярко выявляется на примере кеплеровского движения в двойной звездной системе. Согласно классической теории Ньютона такая система (если считать, что звезды имеют «точечные» размеры) сколь угодно долго сохраняет свою энергию. Наоборот, согласно теории тяготения Эйнштейна такая система должна непрерывно терять энергию на излучение гравитационных волн. Этот эффект особенно силен для тесных двойных систем (см. § 22, где речь шла о возможности объяснения пульсаров системами двойных нейтронных звезд). На достаточно больших расстояниях от двойной системы относительное ускорение, обусловленное гравитационной волной, на много порядков превосходит обычное приливное «статическое» ускорение, создаваемое такой системой, которое убывает как r– 3.
Какие же космические объекты являются источниками гравитационного излучения? Прежде всего — это тесные двойные (или кратные) системы. Усредненная по периоду обращения мощность гравитационного излучения от двойной системы дается формулой
| (24.7) |
причем частота гравитационного излучения равна удвоенной частоте орбитального движения (т.е. 4
Другим источником гравитационного излучения являются вращающиеся вокруг своих осей звезды с несимметричным распределением массы (например, трехосные эллипсоиды). Мощность гравитационного излучения- такой звезды определяется формулой (22.3) (см. § 22).
Частота излучаемых гравитационных волн равна удвоенной частоте осевого вращения, что является общим свойством квадрупольного излучения. Обращает на себя внимание очень сильная зависимость Lg от