10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА
Шрифт:
Однако через два года Нильс Бор пробил еще одну брешь в «крепостной стене» классической теоретической физики, применив к теории атома принципы эйнштейновской теории относительности, причем применив их самым решительным образом. В своих первых работах Эйнштейн рассматривал свет в качестве волн, но уже в 1905 году (следуя Планку) стал описывать видимый свет и любое другое электромагнитное излучение как поток дискретных частиц (кстати, работы Эйнштейна по теории относительности и квантовой механике были опубликованы почти одновременно). Слово «квант» по-латыни означает порцию, небольшую часть чего-то, а Эйнштейн удачно предложил для крошечных порций светового потока термин «фотон», который быстро стал общеупотребительным.
Через два
Гипотеза настолько противоречила представлениям классической физики, что сам Бор называл ее «сумасшедшей». Более того, существование в атоме выделенных орбит казалось противоречащим не только здравому смыслу, но и всему опыту человечества. Например, астрономы прекрасно знают, что Луна вполне может вращаться вокруг Земли по несколько иной орбите (кстати, так все и обстоит на самом деле, поскольку Луна постоянно отдаляется от Земли со скоростью около 3 сантиметров в год), а Земля вполне может сместиться в своем движении ближе к Солнцу и т. д. По гипотезе Бора движение электронов подчинялось совершенно иным законам, поскольку электрон мог совершать скачок (или квантовый переход), при котором он полностью «исчезает» на одной орбите и в то же мгновенье «возникает» на другой. Физики не понимали, как это вообще может происходить! Es muss sein! Как электрон может попадать из одной точки пространства в другую, минуя все остальные? Поведение электрона в модели Бора не соответствовало, строго говоря, даже тому смыслу, который обычно вкладывается в понятие «прыжок», поскольку его положение при переходе не определяется никакими координатами и связано с непонятными и странными для нашей логики закономерностями.
При переходе с орбиты на орбиту электрон излучает или поглощает энергию, что позволило Бору предсказать частоты спектральных линий для простейшего атома водорода и найти решение одной из важнейших задач, давно занимавшей ученых. Дело в том, что еще в начале XIX века физики и химики начали регистрировать спектральные линии и связывать их с определенными химическими элементами. На этой основе возникла обширная наука, названная спектрографией, которая широко использовалась для изучения химического состава земных и небесных объектов, несмотря на то, что никто из специалистов не понимал природу и механизм возникновения спектров различных веществ.
Квантовая механика позволила совершенно точно ответить на все вопросы спектрографии, как бы удовлетворяя извечную человеческую страсть к поиску объяснений. Из теории Бора непосредственно вытекали простые и ясные правила отбора по спектральным линиям: когда электрон исчезает или возникает (на низкоэнергетической или высокоэнергетической орбите), то он излучает или поглощает кванты, в результате чего в спектре соответствующего вещества и возникают, соответственно, темные и яркие линии. Атомы каждого химического элемента обладают строго заданными электронными структурами, что и позволяет спектрографам с высокой точностью идентифицировать химический состав вещества даже космических тел, благодаря регистрации квантовых скачков в электронных структурах образующих их элементов. Читатель легко может проверить последнее утверждение, заметив красноватый отблеск многих небесных объектов, что объясняется квантовыми переходами электронов между высшими и низшими орбитами в самом распространенном элементе Вселенной – водороде (при таких переходах излучаются кванты красной области видимого спектра).
При этом Бору не удалось дать оппонентам, конечно, никаких физических обоснований ни числу электронов, ни структуре их орбит. Он просто сумел гениально угадать некие общие закономерности и объяснить, почему и как наши приборы регистрируют некоторые реальные процессы, происходящие внутри атомов. Надо сразу подчеркнуть, что профессоров Кембриджа (тех самых упомянутых выше Старых Быков) теории Бора огорчили даже сильнее, чем эксперименты и гипотезы Ре-зерфорда. Вспомните, что каждый из них, начиная в молодости заниматься наукой, постоянно мечтал найти какие-то разумные, «взрослые» ответы на свои «детские» вопросы. Психологически эти люди ждали от науки четких и понятных объяснений наблюдаемых физических явлений, т. е. хотели выявить некую логику в законах природы. Идеи Бора казались им не только непонятными, но и нелогичными. Какое-то время в модели Бора оставались нерешенными некоторые сложные математические задачи, однако их решением с энтузиазмом занялись многие молодые талантливые физики, которым довольно быстро удалось создать стройную и серьезную теорию, ставшую фундаментом принципиально новой науки.
Обнаружилось, что для описания любого атома в модели Бора необходимо вычислить или задать четыре главных параметра для каждого электрона, а именно: размер электронной орбиты, ее форму (обычно она похожа на эллипс, а не на окружность) и направленность, а также спин электрона (некое собственное вращение, осуществляемое по часовой стрелке или в обратном направлении). Каждому из указанных параметров соответствует особое квантовое число, набор которых и определяет конкретное энергетическое состояние электрона. Основное правило для атомных систем (физики называют его «принципом исключения») гласит, что каждой орбите, т. е. стационарному состоянию электрона, может соответствовать лишь один-единственный набор значений описанных выше квантовых чисел. Орбиты заполняются, начиная с более низкоэнергетических, а любой другой свободный электрон может занять в атоме лишь следующую орбиту с более высокой энергией.
Трудом и талантом многих физиков-теоретиков удалось довольно быстро построить так называемую квантово-механическую модель атома, в которой последний похож не на футбольный мяч, а скорее на почти пустой, пульсирующий шарик энергии, способный к неожиданным и энергичным изменениям. Затем очень быстро удалось получить множество блестящих теоретических и экспериментальных результатов, подтверждающих новую модель. Наиболее важным из них оказалась прямая регистрация протона в 1919 г. и нейтрона в 1932 г. Сегодня можно только удивляться тому, как легко множество молодых ученых решительно и даже безрассудно забросили свои предыдущие увлечения и занялись сложнейшими математическими задачами новой науки. Конечно, исследования возглавлял сам Нильс Бор (он и вошел в историю в качестве «отца квантовой механики»), учениками которого было почти целое поколение блестящих ученых, поверивших в новую науку, хотя и постоянно ссорившихся друг с другом относительно ее частных приложений и общефилософских обоснований. Это было временем увлекательной и плодотворнейшей работы будущих великих ученых, из которых следует выделить Гейзенберга (известного дамского угодника), Шрёдингера (заядлого альпиниста и путешественника) и самого Бора (любителя футбола, который иногда впадал в глубокие размышления именно в разгаре игры и переставал следить за мячом).
Разумеется, научное сообщество встречало новые открытия весьма скептически. Например, кто-то из Старых Быков ехидно говорил, что «квантовая механика – всего лишь жалкая попытка изобразить понимание процессов», на что Бор осторожно отвечал репликой, что его утверждения «представляют собой скорее вопросы или предположения, а не строгие утверждения». Сторонником и активным участником исследований и дискуссий был Эйнштейн, который позднее назвал теоретические построения Бора проявлением «высшей музыкальности творческой мысли».
Напомним, что квантовая физика сразу и практически без объяснений делит мир на две части – макрокосм (объекты крупнее атома) и микрокосм (субатомные частицы). Кажущаяся хаотичной квантовая механика на самом деле достаточно точно описывает поведение атомов и более мелких частиц вещества. С другой стороны, классическая физика и теория относительности в соответствии со своими собственными законами позволяют описывать более крупные объекты (от атома до далеких галактик, квазаров и черных дыр), вследствие чего большинству физиков казалось просто непонятным, почему квантовая физика неприменима для рассмотрения объектов и явлений всего окружающего нас мира. Впрочем, однажды девятилетний сын моего приятеля, случайно присутствовавший при разговоре о квантовой механике, вдруг уверенно заявил мне, что идея Бора о стационарных состояниях весьма разумна и проста (мальчик сказал: «…ведь это похоже на скоростной лифт, который останавливается лишь на определенных этажах»).