Чтение онлайн

на главную

Жанры

10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА

Флауэрс Чарльз

Шрифт:
***

Расшифровка принципа структуры генов стала самой важной и увлекательной задачей биологии в первой половине XX века, а по мнению некоторых ученых, решение этой задачи имеет принципиальное значение для развитии науки вообще. Питер Медавар считает, что «не стоит даже спорить с дураками, не понимающими, что открытие Уотсона и Крика является величайшим научным достижением XX века». Авторами открытия стали Френсис Крик, Джеймс Уотсон, основываясь на открытии исследовательницы Розалинды Франклин. Об их роли очень точно написал позднее Майкл Лернер: «В науке, как и в любой области интеллектуальной деятельности, всегда существуют два типа специалистов – архитекторы и строители-каменщики. Каменщики выполняют очень важную работу, но их всегда бывает достаточно много, а вот Уотсон и Крик относятся к очень редкому типу архитекторов».

Френсис

Крик, Джеймс Уотсон

До сих пор в этой книге «каменщики» науки практически не упоминались, за исключением мелькнувших в тексте студентов Моргана, нескольких физиков-теоретиков и пары математиков, принимавших участие в доказательстве теоремы Ферма. Книга посвящена именно великим ученым, многие из которых, например Эйнштейн, вообще не нуждались в чьей-либо помощи. В генетике дело обстоит значительно сложнее, так как для создания великой и обобщающей теории необходимо было обработать буквально горы многостраничных отчетов и материалов, полученных разными авторами в многочисленных исследовательских центрах и институтах. Например, было установлено, что в передаче наследственной информации активно участвуют молекулы ДНК (дезоксирибонуклеиновой кислоты), входящие в состав ядер всех клеток организма, причем число этих клеток очень велико (так, организм взрослого человека состоит примерно из 100 триллионов клеток). Молекула ДНК внутри клетки свернута в настолько тугую спираль, что в растянутом состоянии ее длина составляет около 2,5 метров, и общая длина всех вытянутых в единую нить ДНК-молекул одного человека вполне сопоставима с диаметром земной орбиты! Более того, для нормальной жизни и функционирования организма (включая рост, развитие, старение и т. п.) необходимо не только огромное количество клеток, но и значительное разнообразие их типов. Жизнь человека обеспечивается совместной и согласованной работой примерно 200 типов специализированных клеток (волос, крови, кожи и т. д.), имеющих самые различные функции, формы и размеры (средний размер клеток можно оценить исходя из того, что группа в 250 клеток примерно соответствует размеру точки, напечатанной в конце этого предложения). Рассказ о клетках понадобился для того, чтобы читатель оценил сложность проблемы – все эти крошечные, но весьма разнообразные по форме и функциям сложнейшие образования содержат в себе микроколичества свернутых в клубок молекул ДНК, которые необходимо было выделить и исследовать, поскольку именно в этих молекулах содержится «секрет жизни», т. е. механизм передачи наследственной информации.

Еще одним важным достижением стало обнаружение способности генов (которые до сих пор остаются во многом загадочными объектами) регулировать производство белков внутри клеток. В 1951 году знаменитый химик Лайнус Полинг доказал, что некоторые из синтезируемых белков имеют спиральную структуру, т. е. они похожи на свернутую в клубок нить, и он же первым попробовал использовать для изучения их строения хорошо известный физикам метод рентгеноструктурного анализа.

Незаслуженно забытая сейчас Розалинда Франклин, работавшая в Кинг колледже под руководством Полинга, начала систематические исследования ДНК и в 1952 году получила первые рентгеновские дифрактограммы молекулярных нитей ДНК, выделенных из тимуса (зобной железы) телят. Изображения были слишком сложны для сколь-нибудь детального анализа и очень напоминали популярные сейчас в США ультразвуковые снимки младенца в утробе матери на ранних стадиях беременности, но явно соответствовали какой-то сложной спиральной структуре. На самой первой рентгенограмме, ставшей знаменитой и даже получившей собственное название «Экспозиция 51», можно выделить крупную расплывчатую фигуру в виде грубого креста, образованную какими-то «стержнями», расположенными на равных расстояниях друг от друга. К сожалению, все попытки Розалинды Франклин согласовать полученное изображение со спиральной моделью Полинга оказались безуспешными.

Предсказываемую Полингом структуру пыталась обнаружить также исследовательская группа в знаменитой Кавендишской лаборатории Кембриджа. В 1953 году полученная Франклин рентгенограмма ДНК попалась на глаза руководителю этой группы Джеймсу Уотсону и произвела на него совершенно потрясающее впечатление. Позднее он признавался, что испытал почти физическое напряжение от ощущения мгновенной догадки: «…увидев изображение, я от изумления раскрыл рот и даже почувствовал учащение пульса». Этот момент озарения принес Уотсону всемирную славу.

Он сумел восстановить структуру по ее проекциям, подобно тому, как дети складывают целую картинку из кусочков. На древнегреческих вазах иногда встречается сложный узор, в котором два силуэта или профиля сливаются и переходят друг в друга, и именно такой оказалась угаданная Уотсоном знаменитая «двойная спираль», которую сегодня знают даже школьники. Тот факт, что никто из специалистов не сумел «разглядеть» структуру раньше, можно объяснить как высоким профессионализмом Уотсона, так и удивительной «открытостью» его воображения и интеллекта, т. е. способностью воспринимать новые идеи и образы. Это и позволило ему угадать в рентгенограмме вид ДНК в проекции «сверху-вниз», при котором смутное изображение креста соответствует не одной спирали, а двум, но плотно и аккуратно «намотанным» друг на друга. Уотсон сумел по этому расплывчатому образу представить соответствующую пространственную конфигурацию, подобно архитектору, с которым его сравнил Медавар в приведенной выше цитате.

Дальнейшая история открытия достаточно хорошо известна. Уотсон обсудил придуманную им структуру с Френсисом Криком, а затем рассказал об открытии остальным сотрудникам Кавендишской лаборатории на традиционной субботней встрече в кембриджском пивном баре «Игл». Затем Уотсон и Крик быстро «додумали» детали структуры, изготовили демонстрационную модель из палочек и проволоки и «помчались» к Нобелевской премии. Незадолго до выхода в свет престижного журнала «Nature» с их статьей Уотсон (по скромности или из осторожности) сказал одному из близких друзей: «…если мы правы, то, похоже, что эта молекула может самовоспроизводиться». Сама статья начиналась с не очень скромной фразы о предлагаемой модели ДНК, которая «…имеет новые свойства и представляет значительный интерес для биологии».

***

Уотсон и Крик показали, что нить ДНК длиной около 2,5 метров может быть представлена в виде записи некоторого текста на «химическом языке», алфавит которого состоит из четырех букв и содержит всю генетическую информацию, относящуюся к наследуемым признакам. Речь идет даже не об аналогии, а о записи в реальной структуре, так как каждая нить двойной спирали представляет собой цепочку нуклеотидов, каждый из которых, в свою очередь, состоит из углевода дезоксирибозы, фосфата и так называемого основания. В состав ДНК входят четыре типа оснований (аденин, гуанин, тимин и цитозин), которые и соответствуют четырем буквам алфавита в предложенной выше метафоре химической записи текста. Каждая последовательность из трех таких оснований на нити ДНК отвечает за создание специфической аминокислоты, способной в дальнейшем синтезировать внутри клетки определенный тип белковых молекул (число различных белковых молекул, синтезируемых по данному принципу, очень велико и достигает нескольких тысяч). Позднее оказалось, что именно такой механизм управления синтезом белков (названный впоследствии триплетным кодом) может, действительно, считаться физико-химической основой жизни вообще. Он используется всеми живыми организмами без исключения, а разница между биологическими видами (а внутри видов и между отдельными организмами) обусловлена лишь различием в последовательности этих триплетов вдоль нити ДНК.

Синтез одного белка в клетке осуществляется посредством целой цепочки различных операций. Сперва «задание» на синтез данного белка передается с ДНК на молекулу похожего типа (рибонуклеиновая кислота, РНК), которая «копирует» с поверхности ДНК соответствующую этому белку последовательность оснований (РНК с записью называют информационной РНК или просто месседжером, т. е. посланием). Информационная РНК поступает в другую клеточную структуру, называемую рибосомой, где раскручивается подобно серпантину, передавая последовательно, триплет за триплетом, все записанные на ней данные. На основе полученной информации так называемая транспортная РНК доставляет к рибосоме конкретные аминокислоты из существующих 22 видов, они связываются в единую цепочку, образуется белковая молекула. В конце этого довольно сложного производственного цикла (ДНК -› передача информации через месседжер на рибосому -» передача информации на транспортную РНК -› доставка аминокислот -› синтез и сборка белковых молекул) внутри клетки возникает новая трехмерная белковая цепочка, содержащая иногда сотни аминокислот, «построенная» по строго заданным инструкциям и способная выполнять «исходное» задание. Синтезируемые в клетке белковые молекулы весьма разнообразны и очень сложны, так как в их число входят белки, регулирующие процессы метаболизма в клетке, ферменты, способные инициировать, т. е. «запускать» различные процессы, известные всем антитела, обеспечивающие иммунитет организма и другие важнейшие типы биологически активных молекул.

Закручивание двух нитей ДНК относительно друг друга означает, что нуклеотиды каждой из них должны быть определенным образом связаны с нуклеотидами другой, причем эта связь носит сложный, комплементарный характер, что и позволяет нитям ДНК осуществлять описанное выше копирование (дублирование, репликацию). Точность сборки и взаимной «подгонки» нитей ДНК основана на том, что химически могут связываться только строго определенные пары оснований (так называемые комплементарные пары: аденин-тимин или цитозин-гуанин). Такая избирательность связей позволяет создавать как бы зеркальные отражения целых участков структур (например, последовательности оснований аденин-гуа-нин-тимин-цитозин в сопряженной нити ДНК может соответствовать только последовательность тимин-цианин- аденин-гуанин и т. д.), так что читатель может представить себе ДНК в виде трех миллионов сложным образом взаимно-отраженных пар оснований.

Процесс репликации ДНК начинается с того, что под действием ферментов происходит разрушение химических связей между указанными комплементарными парами оснований, в результате чего сдвоенная спираль как бы «разматывается» на отдельных участках. Одновременно другие ферменты (можно лишь упомянуть, что существуют сотни разных ферментов, непрерывно вырабатываемых нашим организмом) осуществляют прямо противоположную задачу, а именно активируют образование новых комплементарных нуклеотидов и их «транспортировку» в соответствующие зеркальные положения на размотанных участках спиралей. После завершения всех операций внутри клетки возникают две совершенно одинаковые двойные спирали, каждая из которых состоит из одной нити первоначальной спирали и одной нити, построенной по принципам комплементарности, т. е. «химического» зеркального отражения.

Поделиться:
Популярные книги

Огни Аль-Тура. Единственная

Макушева Магда
5. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Единственная

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Гром над Империей. Часть 1

Машуков Тимур
5. Гром над миром
Фантастика:
фэнтези
5.20
рейтинг книги
Гром над Империей. Часть 1

Проклятый Лекарь V

Скабер Артемий
5. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь V

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Большая Гонка

Кораблев Родион
16. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Большая Гонка

Князь

Мазин Александр Владимирович
3. Варяг
Фантастика:
альтернативная история
9.15
рейтинг книги
Князь

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Совок 5

Агарев Вадим
5. Совок
Фантастика:
детективная фантастика
попаданцы
альтернативная история
6.20
рейтинг книги
Совок 5

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII