100 рассказов о стыковке. Часть 2
Шрифт:
Конечно, сделать это непросто. Существуют разные способы воспроизведения такого движения в земных условиях. Каждый из них имеет свои преимущества и недостатки, но все они сложны и доставляют много хлопот испытателям. Можно, например, подвешивать специальные макеты кораблей на карданных шарнирах, так, чтобы точки подвеса находились в центрах тяжести кораблей и перемещались в трех направлениях. Получается довольно простая система, но в ней все же нелегко полностью исключить земную тяжесть при поступательных движениях, а также имитировать работу систем управления кораблями.
Специалисты НАСА выбрали другой путь. Они сделали комбинированную установку
На такой испытательной установке американские специалисты отрабатывали систему стыковки для лунной программы «Аполлон», а потом и для программы «Скайлэб». Установка очень дорогая и довольно капризная в эксплуатации. В ней используется много высокоточных приборов, начиная от приводов стенда, датчиков усилий и перемещений, кончая элементами вычислительного устройства. Она снабжена системой автоматической настройки и проверки, а также разветвленной системой аварийной остановки при возникновении каких?либо неисправностей, перегрузок или выхода одного из ее многочисленных параметров за допустимые пределы. Чтобы проводить испытания при очень высоких и очень низких температурах, часть стенда с испытуемыми агрегатами заключается в специальный подвижный чехол, под который нагнетается горячий или холодный воздух.
Короче говоря, испытательный комплекс, хотя и обладает большими возможностями и несомненными достоинствами, сам требует тщательного ухода, постоянного контроля и устранения частых неисправностей. В этом мы убедились на собственном опыте осенью 1973 года и особенно летом 1974 года во время проведения совместных динамических испытаний. Как?то один из американских специалистов в сердцах пошутил: «Здесь никогда не знаешь, что испытывается: стыковочное устройство на стенде или стенд с помощью стыковочного устройства».
На самом деле бывало и то, и другое. Несомненное достоинство американской испытательной установки — возможность «стыковать» самые различные космические корабли: от легких до сверхтяжелых. Ведь изменять параметры кораблей очень просто, достаточно ввести нужные коэффициенты в уравнениях, решаемых компьютером, или использовать другие уравнения. По мере развития космических полетов, увеличения количества запускаемых космических кораблей и станций такой стенд действительно может оказаться необходимым.
Испытательную установку подобного типа, конечно, трудно было сразу создать совершенной. Стенд с системой приводов, изготовленный в середине 60–х годов в разгар работ по программе «Аполлон», рассчитывался на испытание стыковочных устройств ограниченных размеров. Кроме того, принципиальная кинематическая схема стенда была не совсем удачной: сложна, громоздка и имела целый ряд неблагоприятных технических характеристик.
Поэтому, готовясь к испытаниям о программе ЭПАС, а также учитывая перспективы развития следующей программы пилотируемых полетов США — «Спейс Шаттл»,
К осени 1973 года работы были закончены, схема стенда стала намного логичнее и проще. Но, к сожалению, при этом, как выяснилось позднее, не избежали и некоторых просчетов.
Новые полномасштабные стыковочные агрегаты решили испытывать именно на этой динамической установке в Хьюстоне. Конец зимы, весна и все лето семьдесят третьего года ушли на изготовление и отработку стыковочного агрегата в СССР и подготовку к совместным испытаниям. Тем же были заняты американские специалисты в США. В мае первый АПАС увидел свет. Это уже была настоящая космическая система, отвечающая всем жестким требованиям, обеспечивающим ее высокую надежность при минимальном весе и габаритах.
Он действительно получился красивым, наш АПАС, если исходить из того, что истинная красота конструкции в рациональности, в том изяществе, с которым она решает поставленные перед ней задачи. «Он элегантен, ваш стыковочный агрегат», — скажет позднее М. Фаже, один из руководителей американского космического Центра имени Джонсона. Я думаю, он имел в виду не только внешний вид АПАСа, комплимент относился и к его принципу действия.
Поскольку корабль «Аполлон» создавался для полета на Луну, американские конструкторы, приспосабливая его для решения задач в околоземном космосе, располагали солидными резервами веса. Может быть, по этой причине авторы американского стыковочного агрегата не слишком заботились об экономии веса. Их стыковочный агрегат получился почти в два раза тяжелее нашего.
АПАС успешно прошел всю предварительную отработку и проверку и к концу августа был готов к отправке в Техас.
Наша небольшая испытательная команда 14 сентября, прибыла в Хьюстон. Нам предстояло впервые произвести настоящую стыковку агрегатов кораблей «Союз» и «Аполлон», при которой фактически проверялись и отрабатывались все этапы сложного и многостороннего процесса соединения кораблей, работа агрегатов в совместном полете и при расстыковке.
Сначала последовательно шаг за шагом были проверены все операции по стыковке и расстыковке, причем оба агрегата работали при этом как в активной, так и в пассивной роли. Затем испытана герметичность состыкованных агрегатов, в том числе при нагреве и охлаждении конструкций с имитацией полетных экстремальных температур. Еще раз убедились в том, что стык способен выдерживать одновременное воздействие внешних и внутренних нагрузок. На этом первая часть испытаний закончилась, и агрегаты установили на динамический стенд для проведения основной по объему и сложности части работ — стыковки с имитацией движения космических кораблей в условиях невесомости.
На этом стенде мы провели в общей сложности более 100 стыковок, или испытательных пробегов, как их называли американцы, при нормальных, высоких и пониженных температурах. Может возникнуть вопрос: зачем нужно так много стыковок? Дело в том, что корабли могут подойти друг к другу в самых разных положениях. Космонавты и астронавты управляют сближением кораблей, используя две трехстепенные ручки и наблюдая специальную мишень, как бы прицеливаясь по ней. Несмотря на продолжительные и интенсивные тренировки, как и при обычной стрельбе, всегда возникают ошибки. Только здесь их разброс увеличивается: управлять приходится пространственным положением, выдерживая как относительные координаты, так и скорости.