100 великих научных открытий
Шрифт:
То, что элементы однозначно и вполне определяются видом линейчатого спектра, вскоре признали все, но то, что этот же спектр характеризует отдельный атом, осознали не сразу, а лишь в 1874 году, благодаря работам знаменитого английского астрофизика Нормана Локьера (1836–1920). А когда осознали, сразу же пришли к неизбежному выводу: поскольку линейчатый спектр возникает внутри отдельного атома, то атом должен иметь структуру, то есть иметь составные части!»
ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ
Англичанин Гэмфри Дэви (1788–1829) стал профессором в 23 года, заслужил
За свою долгую жизнь в науке он провел много удачных экспериментов. В начале девятнадцатого века Дэви удалось расплавить трением лед при температуре ниже нуля. Позднее опыт повторил русский ученый Петров. Бенджамен Томпсон (1753–1814), эмигрировавший из Америки после победоносного завершения Войны за независимость и получивший в Баварии титул графа Румфорда, опубликовал в 1798 году результаты опытов по сверлению пушечных стволов. В одном из его опытов при 960 оборотах бура температура просверливаемого цилиндра поднялась на 37 градусов Цельсия.
Дэви пришел к выводу, что теория теплорода несовместима как с опытами Румфорда, так и с его собственными, и выдвинул кинетическую теорию тепла, согласно которой теплота представляет колебательное движение частиц тела, причем для газов и жидкостей он допускал и вращательное движение частиц. К колебательной теории тепла примкнул и Юнг.
И все же теория теплорода продолжала господствовать. Два наиболее фундаментальных сочинения по теории тепла, относящиеся к рассматриваемому периоду, — сочинения, которые по праву вошли в золотой фонд научной литературы, — основаны на концепции теплорода. Первое из этих сочинений, «Аналитическая теория тепла» Фурье, вышло в 1822 году в Париже и представляет собой итог его многолетних исследований в области математической физики.
Другое сочинение принадлежало сыну известного французского математика Лазара Карно Сади Карно. Николо Леонар Сади Карно (1796–1832) учился в Политехнической школе. С 1814 года он работает военным инженером, а с 1819-го состоит лейтенантом при генеральном штабе. Как сын республиканского министра, находящегося в изгнании, Карно не мог продвигаться по службе и в 1828 году вышел в отставку. Он умер от холеры. Сочинение «Размышление о движущей силе огня», вышедшее в 1824 году, было единственной законченной работой Карно.
Карно пишет: «Тепло — не что иное, как движущая сила или, вернее, движение, изменившее свой вид; это движение частиц тел; повсюду, где происходит уничтожение движущей силы, возникает теплота, в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила.
Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, то есть вызывает то один род движения, то другой, но никогда не исчезает.
По некоторым представлениям, которые сложились у меня относительно теории тепла, создание единицы силы требует затраты 2,7 единиц тепла».
По поводу этих строк знаменитый французский ученый Анри Пуанкаре восхищенно воскликнет в 1892 году: «Можно ли яснее и точнее высказать закон сохранения энергии?»
Будучи инженером, Карно занимался расчетом и строительством водяных двигателей. Но так как к тому времени по всей Франции стали все чаще применять паровые машины, то молодой инженер увлекся созданием теории тепловых машин.
Тогда еще в науке господствовали взгляды о том, что теплота является веществом. Но Сади Карно решил ответить на один из труднейших вопросов физики; при каких обязательных условиях возможно превращение теплоты в работу? Хорошо знакомый с расчетом водяных двигателей, Карно уподобил теплоту воде.
Он прекрасно знал: для того, чтобы водяная мельница работала, необходимо одно условие — вода должна падать с высокого уровня на низкий. Карно предположил: чтобы теплота могла выполнять работу, она тоже должна переходить с высокого уровня на низкий, и разность высот для воды соответствует разности температур для теплоты.
В 1824 году Сади Карно высказал мысль, благодаря которой он вошел в историю: для производства работы в тепловой машине необходима разность температур, необходимы два источника теплоты с различными температурами. Это утверждение в теории Карно является главным и называется принципом Карно. На основе выведенного им принципа Карно придумал цикл идеальной тепловой машины, которую не может превзойти никакая реальная машина.
Идеальная машина, по Карно, представляла собой простой цилиндр с поршнем. Нижняя стенка цилиндра обладает идеальной теплопроводностью, его можно поставить на горячую поверхность, например, на поверхность нагревателя, наполненного смесью расплавленного и твердого свинца, или на поверхность холодильника, например, со смесью воды и льда. Оба источника теплоты бесконечно велики.
Второй закон термодинамики утверждает, что вечный двигатель второго рода невозможен. Это утверждение является пересказом принципа Карно, и, следовательно, коэффициент полезного действия машины, работающей по циклу Карно, не может зависеть от вещества, используемого в цикле.
Карно описал цикл работы идеальной тепловой машины, показал, как можно рассчитать ее максимальный КПД.
Для этого необходимо лишь знать самую высокую и самую низкую температуру водяного пара (или любого другого теплоносителя, как отметил Карно), используемого в данной машине. Разность между этими температурами, деленная на значение высокой температуры, равна КПД машины. Температуры при этом необходимо выражать в градусах абсолютной шкалы Кельвина. Это уравнение называется вторым началом термодинамики, и ему подчиняется вся техника.
Расчет по формуле Карно показал, что первые тепловые машины не могли иметь КПД выше 7–8 процентов, а если учесть неизбежные утечки тепла в атмосферу, то полученное значение 2–3 процента следует признать значительным достижением…
Довольно быстро наряду с паром, как и предсказывал Карно, в турбинах стали использовать и газ, который можно нагреть до высокой температуры. Если температура горячего газа в турбине 800 градусов Кельвина (527 градусов Цельсия), а холодильник уменьшает ее до 300 градусов Кельвина, то максимальный КПД машины, даже в случае работы по идеальному циклу Карно, не может быть выше 62 процентов. Неизбежные тепловые потери приводят, как всегда, к уменьшению и этой цифры. У лучших образцов турбин, установленных на современных электростанциях, КПД составляет 35–40 процентов.