Чтение онлайн

на главную - закладки

Жанры

100 великих научных открытий
Шрифт:

Чтобы дать по возможности ясную картину сложившейся в атомной физике ситуации, совершенно новой с точки зрения теории познания, мы хотели бы здесь прежде всего рассмотреть несколько подробнее такие измерения, целью которых является контроль за пространственно-временным ходом какого-либо физического процесса. Такой контроль в конечном счете всегда сводится к установлению некоторого числа однозначных связей поведения объекта с масштабами и часами, определяющими используемую нами пространственно-временную систему отсчета. Мы лишь тогда можем говорить о самостоятельном, не зависимом от условий наблюдения поведении объекта исследования в пространстве и во времени, когда при описании всех условий, существенных для рассматриваемого процесса, можем полностью пренебречь взаимодействием объекта с измерительным

прибором, которое неизбежно возникает при установлении упомянутых связей. Если же, как это имеет место в квантовой области, такое взаимодействие само оказывает большое влияние на ход изучаемого явления, ситуация полностью меняется, и мы, в частности, должны отказаться от характерной для классического описания связи между пространственно-временными характеристиками события и всеобщими динамическими законами сохранения. Это вытекает из того, что использование масштабов и часов для установления системы отсчета по определению исключает возможность учета величин импульса и энергии, передаваемых измерительному прибору в ходе рассматриваемого явления. Точно так же и наоборот, квантовые законы, в формулировке которых существенно используются понятия импульса или энергии, могут быть проверены лишь в таких экспериментальных условиях, когда исключается строгий контроль за пространственно-временным поведением объекта».

Согласно соотношению неопределенностей Гейзенберга, нельзя в одном и том же опыте определить обе характеристики атомного объекта — координату и импульс.

Но Бор пошел дальше. Он отметил, что координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. Действительно, для измерения импульса атомной частицы необходим чрезвычайно легкий подвижный «прибор». Но именно из-за его подвижности положение его весьма неопределенно. Для измерения координаты нужен очень массивный «прибор», который не шелохнулся бы при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим.

«Дополнительность — вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору, — пишет Л.И.Пономарев. — До него все были убеждены, что несовместимость двух типов приборов непременно влечет за собой противоречивость их свойств. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства их действительно несовместимы, но для полного описания атомного объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга.

Это простое рассуждение о дополнительности свойств двух несовместимых приборов хорошо объясняет смысл принципа дополнительности, но никоим образом его не исчерпывает. В самом деле, приборы нам нужны не сами по себе, а лишь для измерения свойств атомных объектов. Координата х и импульс р — это те понятия, которые соответствуют двум свойствам, измеряемым с помощью двух приборов. В знакомой нам цепочке познания — явление — образ, понятие, формула, принцип дополнительности сказывается прежде всего на системе понятий квантовой механики и на логике ее умозаключений.

Дело в том, что среди строгих положений формальной логики существует „правило исключенного третьего“, которое гласит: из двух противоположных высказываний одно истинно, другое — ложно, а третьего быть не может. В классической физике не было случая усомниться в этом правиле, поскольку там понятия „волна“ и „частица“ действительно противоположны и несовместимы по существу. Оказалось, однако, что в атомной физике оба они одинаково хорошо применимы для описания свойств одних и тех же объектов, причем для полного описания необходимо использовать их одновременно».

Принцип дополнительности Бора — удавшаяся попытка примирить недостатки устоявшейся системы понятий с прогрессом наших знаний о мире. Этот принцип расширил возможности нашего мышления, объяснив, что в атомной физике меняются не только понятия, но и сама постановка вопросов о сущности физических явлений.

Но значение принципа дополнительности выходит далеко за пределы квантовой механики, где он возник первоначально. Лишь позже — при попытках распространить его на другие области науки — выяснилось его истинное значение для всей системы человеческих знаний. Можно спорить о правомерности такого шага, но нельзя отрицать его плодотворность

во всех случаях, даже далеких от физики.

«Бор показал, — отмечает Пономарев, — что вопрос „Волна или частица?“ в применении к атомному объекту неправильно поставлен. Таких раздельных свойств у атома нет, и потому вопрос не допускает однозначного ответа „да“ или „нет“. Точно так же, как нет ответа у вопроса: „Что больше: метр или килограмм?“, и у всяких иных вопросов подобного типа».

Два дополнительных свойства атомной реальности нельзя разделить, не разрушив при этом полноту и единство явления природы, которое мы называем атомом…

…Атомный объект — это и не частица, и не волна и даже ни то, ни другое одновременно. Атомный объект — это нечто третье, не равное простой сумме свойств волны и частицы. Это атомное «нечто» недоступно восприятию наших пяти чувств, и тем не менее оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет познать ее и без этого. В конце концов (надо признать правоту Борна), «…теперь атомный физик далеко ушел от идиллических представлений старомодного натуралиста, который надеялся проникнуть в тайны природы, подстерегая бабочек на лугу».

ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ

Искусственную радиоактивность открыли супруги Ирен (1897–1956) и Фредерик (1900–1958) Жолио-Кюри. 15 января 1934 года их заметка была представлена Ж. Перреном на заседании Парижской Академии наук. Ирен и Фредерик сумели установить, что после бомбардировки альфа-частицами некоторые легкие элементы — магний, бор, алюминий — испускают позитроны. Далее они попытались установить механизм этого испускания, которое отличалось по своему характеру от всех известных в то время случаев ядерных превращений. Ученые поместили источник альфа-частиц (препарат полония) на расстоянии одного миллиметра от алюминиевой фольги. Затем они подвергали ее облучению в течение примерно десяти минут. Счетчик Гейгера — Мюллера показал, что фольга испускает излучение, интенсивность которого падает во времени по экспоненциальной зависимости с периодом полураспада 3 минут 15 секунд. В экспериментах с бором и магнием периоды полураспада составили 14 и 2,5 минут соответственно.

А вот при опытах с водородом, литием, углеродом, бериллием, азотом, кислородом, фтором, натрием, кальцием, никелем и серебром таких явлений не обнаруживалось. Тем не менее супруги Жолио-Кюри сделали вывод о том, что излучение, вызванное бомбардировкой атомов алюминия, магния и бора, нельзя объяснить наличием какой-либо примеси в полониевом препарате. «Анализ излучения бора и алюминия в камере Вильсона показал, — пишут в своей книге „Биография атома“ К. Манолов и В. Тютюнник, — что оно представляет собой поток позитронов. Стало ясно, что ученые имеют дело с новым явлением, существенно отличавшимся от всех известных случаев ядерных превращений. Известные до того времени ядерные реакции носили взрывной характер, тогда как испускание положительных электронов некоторыми легкими элементами, подвергнутыми облучению альфа-лучами полония, продолжается в течение некоторого более или менее продолжительного времени после удаления источника альфа-лучей. В случае бора, например, это время достигает получаса».

Супруги Жолио-Кюри пришли к выводу, что здесь речь идет о самой настоящей радиоактивности, проявляющейся в испускании позитрона.

Нужны были новые доказательства, и, прежде всего, требовалось выделить соответствующий радиоактивный изотоп. Опираясь на исследования Резерфорда и Кокрофта, Ирен и Фредерику Жолио-Кюри удалось установить, что происходит с атомами алюминия при бомбардировке их альфа-частицами полония. Сначала альфа-частицы захватываются ядром атома алюминия, положительный заряд которого возрастает на две единицы, вследствие чего оно превращается в ядро радиоактивного атома фосфора, названного учеными «радиофосфором». Этот процесс сопровождается испусканием одного нейтрона, вот почему масса полученного изотопа возрастает не на четыре, а на три единицы и становится равной 30. Устойчивый изотоп фосфора имеет массу 31. «Радиофосфор» с зарядом 15 и массой 30 распадается с периодом полураспада 3 минут 15 секунд, излучая один позитрон и превращаясь в устойчивый изотоп кремния.

Поделиться:
Популярные книги

Игра топа. Революция

Вяч Павел
3. Игра топа
Фантастика:
фэнтези
7.45
рейтинг книги
Игра топа. Революция

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Восход. Солнцев. Книга V

Скабер Артемий
5. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга V

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Гром над Империей. Часть 2

Машуков Тимур
6. Гром над миром
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Гром над Империей. Часть 2

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Внешники такие разные

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники такие разные

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8