Чтение онлайн

на главную - закладки

Жанры

100 великих научных открытий
Шрифт:

В 1832 году Галуа, сидя в тюрьме, составляет программу, которую опубликовали лишь спустя семьдесят лет после его смерти. Но и в начале двадцатого века она не вызвала серьезного интереса и скоро была забыта. Только математики нового времени, продолжившие работу многих поколений ученых, осуществили, наконец, мечту Галуа.

«Я умоляю моих судей по крайней мере прочесть эти несколько страниц», — так начал Галуа свой знаменитый мемуар. Однако идеи Галуа были настолько глубоки и всеобъемлющи, что в то время их действительно трудно было оценить какому бы то ни было ученому.

«…Итак, я полагаю, что упрощения, получаемые за счет усовершенствования вычислений (при этом, конечно, имеются

в виду упрощения принципиальные, а не технические), вовсе не безграничны. Настанет момент, когда математики смогут настолько четко предвидеть алгебраические преобразования, что трата времени и бумаги на их аккуратное проведение перестанет окупаться. Я не утверждаю, что анализ не сможет достигнуть чего-нибудь нового и помимо такого предвидения, но думаю, что без него в один прекрасный день все средства окажутся тщетными.

Подчинить вычисления своей воле, сгруппировать математические операции, научиться их классифицировать по степени трудности, а не по внешним признакам, — вот задачи математиков будущего так, как я их понимаю, вот путь, по которому я хочу пойти.

Пусть только никто не смешивает проявленную мной горячность со стремлением некоторых математиков вообще избегнуть каких бы то ни было вычислений. Вместо алгебраических формул они используют длинные рассуждения и к громоздкости математических преобразований добавляют громоздкость словесного описания этих преобразований, пользуясь языком, не приспособленным для выполнения таких задач. Эти математики отстали на сто лет.

Здесь не происходит ничего подобного. Здесь я занимаюсь анализом анализа. При этом самые сложные из известных сейчас преобразований (эллиптические функции) рассматриваются всего лишь как частные случаи, весьма полезные и даже необходимые, но все же не общие, так что отказ от дальнейших более широких исследований был бы роковой ошибкой. Придет время, и преобразования, о которых идет речь в намеченном здесь высшем анализе, будут действительно производиться и будут классифицироваться по степени трудности, а не по виду возникающих здесь функций».

Здесь надо обязательно обратить внимание на слова «сгруппировать математические операции». Галуа, несомненно, подразумевает под этим теорию групп.

В первую очередь Галуа интересовали не отдельные математические задачи, а общие идеи, определяющие всю цепь соображений и направляющие логический ход мыслей. Его доказательства основываются на глубокой теории, позволяющей объединить все достигнутые к тому времени результаты и определить развитие науки надолго вперед. Через несколько десятков лет после смерти Галуа немецкий математик Давид Гильберт назвал эту теорию «установлением определенного остова понятий». Но какое бы название за ней не укрепилось, очевидно, что она охватывает очень большую область знаний.

«В математике, как в любой другой науке, — писал Галуа, — есть вопросы, требующие решения именно в данный момент. Это те насущные проблемы, которые захватывают умы передовых мыслителей независимо от их собственной воли и сознания».

Одна из проблем, над которой работал Эварист Галуа, — решение алгебраических уравнений. Что будет, если рассматривать лишь уравнения с числовыми коэффициентами? Ведь может же случиться, что хотя общей формулы для решения таких уравнений нет, корни каждого отдельного уравнения можно выразить в радикалах. А если это не так? Тогда должен быть какой-то признак, позволяющий определить, решается данное уравнение в радикалах или нет? Что же это за признак?

Первое из открытий Галуа состояло в том, что он уменьшил степень неопределенности их значений, т. е. установил некоторые из «свойств» этих корней. Второе открытие связано с методом, использованным Галуа

для получения этого результата. Вместо того чтобы изучать само уравнение, Галуа изучал его «группу», или, образно говоря, его «семью».

«Группа, — пишет А. Дальма, — это совокупность предметов, имеющих определенные общие свойства. Пусть, например, в качестве таких предметов взяты действительные числа. Общее свойство группы действительных чисел состоит в том, что при умножении любых двух элементов этой группы мы получаем также действительное число. Вместо действительных чисел в качестве „предметов“ могут фигурировать изучаемые в геометрии движения на плоскости; в таком случае свойство группы заключается в том, что сумма любых двух движений дает снова движение. Переходя от простых примеров к более сложным, можно в качестве „предметов“ выбрать некоторые операции над предметами. В таком случае основным свойством группы будет то, что композиция любых двух операций также является операцией. Именно этот случай и изучал Галуа. Рассматривая уравнение, которое требовалось решить, он связывал с ним некоторую группу операций (к сожалению, мы не имеем возможности уточнить здесь, как это делается) и доказывал, что свойства уравнения отражаются на особенностях данной группы. Поскольку различные уравнения могут иметь одну и ту же группу, достаточно вместо этих уравнений рассмотреть соответствующую им группу. Это открытие ознаменовало начало современного этапа развития математики.

Из каких бы „предметов“ ни состояла группа: из чисел, движений или операций, — все они могут рассматриваться как абстрактные элементы, не обладающие никакими специфическими признаками. Для того чтобы определить группу, надо только сформулировать общие правила, которые должны выполняться для того, чтобы данную совокупность „предметов“ можно было назвать группой. В настоящее время математики называют такие правила групповыми аксиомами, теория групп состоит в перечислении всех логических следствий из этих аксиом. При этом последовательно обнаруживаются все новые и новые свойства; доказывая их, математик все более и более углубляет теорию. Существенно, что ни сами предметы, ни операции над ними никак не конкретизируются. Если после этого при изучении какой-нибудь частной задачи приходится рассмотреть некоторые специальные математические или физические объекты, образующие группу, то, исходя из общей теории, можно предвидеть их свойства. Теория групп, таким образом, дает ощутимую экономию в средствах; кроме того, она открывает новые возможности применения математики в исследовательской работе».

Введение понятия группы избавило математиков от обременительной обязанности рассматривать множество различных теорий. Оказалось, что нужно лишь выделить «основные черты» той или иной теории, и так как, по сути дела, все они совершенно аналогичны, то достаточно обозначить их одним и тем же словом, и сразу становится ясно, что бессмысленно изучать их по отдельности.

Галуа стремится внести в разросшийся математический аппарат новое единство. Теория групп — это, прежде всего, наведение порядка в математическом языке.

Теория групп, начиная с конца XIX века, оказала огромное влияние на развитие математического анализа, геометрии, механики и, наконец, физики. Оно впоследствии проникло в другие области математики — появились группы Ли в теории дифференциальных уравнений, группы Клейна в геометрии. Возникли также группы Галилея в механике и группы Лоренца в теории относительности.

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

По определению Евклида параллельные линии — прямые, лежащие в одной плоскости и никогда не встречающиеся, как бы далеко мы их ни продолжали.

Поделиться:
Популярные книги

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Виконт. Книга 4. Колонист

Юллем Евгений
Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.50
рейтинг книги
Виконт. Книга 4. Колонист

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3