Чтение онлайн

на главную

Жанры

100 великих событий ХХ века
Шрифт:

К 2000 г. было теоретически обосновано и экспериментально подтверждено существование трех типов нейтрино: электронного, мюонного и тау-нейтрино. Однако это отнюдь не означает завершения исследований в области изучения физики этих частиц. Ученым не терпится узнать, обладает ли нейтрино массой, поскольку результат этих исследований может серьезно поколебать стройную структуру стандартной модели материи. Обнаружение массы нейтрино крайне важно и для астрофизики – это помогло бы разрешить парадокс «скрытой массы» и прояснить судьбу Вселенной (будет ли она расширяться вечно или в конце концов начнет вновь сжиматься).

Обнаружение космических источников нейтрино может пролить свет на физику экзотических

астрономических объектов, таких как экстремально мощные активные ядра галактик, непрозрачных для легконаблюдаемых фотонов. Одна из интереснейших и труднейших задач для физиков и астрономов – «поймать» нейтрино внеземного происхождения, и прежде всего измерить поток нейтрино от Солнца, что позволит подтвердить теоретические гипотезы о механизмах реакций, обеспечивающих его светимость. Солнце производит только электронные нейтрино, но они значительно различаются по своим энергиям. Согласно Стандартной солнечной модели, солнечная светимость поддерживается главным образом за счет энергии, которая освобождается в результате цепочки реакций, приводящей к образованию гелия из четырех протонов (водородный цикл). Но иногда происходит побочная реакция превращения бериллия в бор, и в этом случае образуются нейтрино с более высокой энергией.

Для нейтрино солнечного вещества как будто и не существует: они улетают с места возникновения по прямолинейной траектории, нигде и ничем не отклоняясь, многие из них достигают поверхности Земли, свободно пронзая земной шар. К счастью, существуют изотопы, с помощью которых можно устроить для нейтрино хоть и небольшое, но заметное препятствие. Наиболее известным из них является хлор-37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро радиоактивного аргона, которое распадается через 35 дней. Используя эту реакцию, можно построить детектор для солнечных нейтрино, который, чтобы компенсировать редкость таких столкновений, должен иметь большие размеры и находиться глубоко под землей для защиты от фонового излучения.

Первый эксперимент по обнаружению солнечных нейтрино с использованием этого метода был начат Р. Дэвисом в 1967 г. в золотой шахте в Хоумстейке (Южная Дакота, США). В контейнере каждый день в среднем один атом хлора должен превращаться в атом аргона под действием нейтрино. Если бы этот детектор обнаружил количество нейтрино, близкое к предсказанному теорией, то это стало бы подтверждением того факта, что Солнце нагревается за счет ядерных реакций превращения водорода в гелий.

К сожалению, эксперименты, проводившиеся в течение нескольких лет, показали, что одна такая реакция происходит в среднем раз в три дня. Из этого следовал вывод, что Солнце производит только треть ожидаемых нейтрино с высокими энергиями. В 1988 г. за дело взялись японские ученые на своем подземном детекторе Kamiokande-II, который расположен на глубине 1000 м. Их эксперимент принципиально отличался от эксперимента Дэвиса. Японцы использовали рассеяние солнечных нейтрино на атомах обычной воды. В результате столкновения нейтрино с каким-либо атомом, входящим в состав воды, ядро атома отскакивало, а электрон из атомной оболочки вылетал с огромной (сверхсветовой для данной среды) скоростью, создавая в воде свечение темно-голубого цвета, называемое излучением Черенкова.

Такая методика позволяет регистрировать все типы нейтрино, но максимально она чувствительна к электронным нейтрино. Ее достоинство заключается в том, что можно определить достаточно точно, откуда прибыло нейтрино, так как вылетевший электрон сохраняет направление движения нейтрино. Для того чтобы поймать нейтрино, использовались 3000 тонн чистейшей воды, помещенной в стальной цилиндрический резервуар. 1000 фотоумножителей,

размещенных на внутренней поверхности резервуара, фиксировали черенковское излучение, свидетельствующее о появлении нейтрино. Но за тысячу дней наблюдений японские ученые тоже обнаружили только половину от ожидаемого потока таких нейтрино.

Необходимо же было еще обнаружить и низкоэнергетичные нейтрино, возникающие в результате чрезвычайно важных для Солнца реакций водородного цикла. Для этого можно было воспользоваться тем, что при воздействии низкоэнергетичных нейтрино на атом галлия образуется атом германия с периодом распада 11 дней. Однако галлий – редкий и очень дорогой металл, а для получения надежных результатов детектор должен был бы содержать примерно 40 тонн этого элемента. Поэтому галлиевые детекторы появились значительно позднее.

Российско-американский галлиевый эксперимент был проведен на Боксанской нейтринной обсерватории, расположенной на большой глубине в горах Кавказа в России. Почти 100 измерений потока солнечных нейтрино, проведенных в течение 1990–2000 гг., зафиксировали только половину потока нейтрино, который прогнозируется Стандартной Солнечной моделью.

Таким образом, все четыре солнечных нейтринных эксперимента показывают, что измеренный поток солнечных нейтрино на орбите Земли значительно меньше предсказанного. Это расхождение получило название «Проблемы солнечного нейтрино».

В отличие от Солнца вспышки сверхновых звезд создают потоки не только нейтрино (причем с энергиями, гораздо большими, чем солнечные), но и антинейтрино. Одно из таких событий произошло 23 февраля 1987 г., когда была зафиксирована нейтринная вспышка, вызванная взрывом сверхновой звезды в Большом Магеллановом Облаке. Это были первые обнаруженные нейтрино от известного источника в другой галактике. За 13 секунд было зарегистрировано 11 нейтринных и антинейтринных событий, хотя обычно в день регистрируется только несколько частиц.

При взрыве сверхновой большая часть энергии уносится в виде нейтрино, остаток в основном уходит на расширение оболочки, и только крошечная доля высвободившейся гравитационной энергии покидает место катастрофы в виде оптической вспышки.

Задачи нейтринной астрономии высоких энергий сводятся в основном к поиску точечных источников излучения, которые не наблюдаются непосредственно.

Глубоководный нейтринный телескоп представляет собой просто пространственную решетку из фотоумножителей, регистрирующих свет от траектории мюонов высоких энергий, свидетельствующих о прохождении нейтрино. Длина пробегов мюонов в воде очень велика, что позволяет довольно точно определить направление на источник. Поэтому для создания огромных детекторов, которые могли бы зафиксировать высокоэнергетичные нейтрино, используют воды океана и глубоководные озера.

Результаты многолетних исследований показали, что Байкал – одно из наиболее подходящих мест на Земле для размещения глубоководных детекторов черенковского излучения, и с 1998 г. там работает нейтринный телескоп NT-200, один из крупнейших в мире.

Созданы и другие нейтринные телескопы: AMANDA, ANTARES, GALLEX, SNO.

1932

Открытие дейтерия и тяжелой воды*

1932 г. физики назвали «годом чудес». Одно за другим следовали выдающиеся открытия в области физики: были открыты нейтрон и позитрон, разработана протонно-нейтронная теория строения ядер и релятивистская квантовая механика, построен первый циклотрон и изобретен электронный микроскоп, проведена первая реакция ядерного синтеза, экспериментально измерена скорость движения молекул. В этом же году был открыт и второй изотоп водорода, названный дейтерием (от греч. deuteros – второй, символ D).

Поделиться:
Популярные книги

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Егерь

Астахов Евгений Евгеньевич
1. Сопряжение
Фантастика:
боевая фантастика
попаданцы
рпг
7.00
рейтинг книги
Егерь

Мастер 8

Чащин Валерий
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер 8

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Феномен

Поселягин Владимир Геннадьевич
2. Уникум
Фантастика:
боевая фантастика
6.50
рейтинг книги
Феномен

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Право налево

Зика Натаэль
Любовные романы:
современные любовные романы
8.38
рейтинг книги
Право налево

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Изгой Проклятого Клана. Том 2

Пламенев Владимир
2. Изгой
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Изгой Проклятого Клана. Том 2

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия