Чтение онлайн

на главную

Жанры

Шрифт:

В 1956 г. Бардин, Браттейн и Шокли были удостоены Нобелевской премии по физике за исследования полупроводников и открытие транзисторного эффекта.

Надежно работающие плоскостные полупроводниковые диоды и триоды были созданы только после изучения свойств полупроводниковых кристаллов и овладения технологией изготовления сверхчистых материалов.

Преимуществом плоскостных контактов по сравнению с точечными является их способность пропускать более сильный ток. Но при этом они имеют значительно большую паразитную емкость, вред которой возрастает с повышением

частоты сигналов.

Поэтому плоскостные диоды и триоды применяются для обработки и усиления низкочастотных сигналов, а точечные, называемые также кристаллическими детекторами, для детектирования слабых сигналов высоких и сверхвысоких частот.

Область применения полупроводников не ограничивалась радиотехникой. Еще в 1932 г. А. Ф. Иоффе создал из закиси меди, а затем из селена фотоэлементы, вырабатывавшие при их освещении электрический ток без помощи внешних источников энергии. Однако их КПД при использовании солнечной энергии не превышал 0,05–0,1 %. Но уже перед Великой Отечественной войной в СССР были созданы фотоэлементы из сернистого таллия и сернистого серебра с КПД до 1 %.

В 1954 г. был создан кремниевый фотоэлемент. В этом же году впервые была построена солнечная батарея, состоявшая из большого числа кремниевых фотоэлементов. В начале 1955 г. были созданы фотоэлементы с КПД до 6 %. Современные фотоэлементы имеют КПД до 20 % и выше.

Располагая полупроводниковый диод рядом с радиоактивным материалом, получают атомную батарею, которая может вырабатывать электрическую энергию на протяжении многих лет.

На основе полупроводников были созданы фотодиоды. В сочетании с электрическими счетчиками они ведут учет движущихся объектов – от производимых деталей до пассажиров в метро. Приборы, созданные с применением фотодиодов, могут определять бракованные изделия на конвейере и выключать оборудование, если в его опасную зону попадают руки рабочих.

Создание приборов на основе полупроводников произвело в середине XX в. техническую революцию. Дальнейшее их развитие привело к созданию интегральных микросхем, появлению новых поколений электронно-вычислительных машин и персональных компьютеров. Сейчас ни одна область науки и техники не обходится без их применения.

Порох

Время и место изобретения пороха сейчас точно установить невозможно. Считается, что он был изобретен в Китае, и долгое время его использовали только для фейерверков.

Кто и как догадался соединить вместе три основных компонента дымного пороха и поджечь, неизвестно. Некоторые исследователи утверждают, что порох был получен как побочный продукт при изготовлении «пилюли бессмертия» китайскими даосами – представителями религиозно-мистического течения.

Основные составные части пороха люди знали издревле. Поскольку серой, помимо химического элемента, раньше называли любые горючие вещества, есть основания полагать, что человек давно заметил особенность серы гореть, образовывая при этом дым с сильным запахом. Возможно, это свойство использовалось для уничтожения

вредных насекомых в жилищах.

Древесный уголь люди получали, пережигая дрова без доступа воздуха. Он выделял при сгорании намного больше тепла, чем обычная древесина.

Оба вышеназванных компонента не могли гореть без доступа воздуха. Поэтому требовался сильный окислитель, разлагающийся при нагревании с выделением кислорода. Таким ингредиентом стала калийная селитра К2С03. Она была продуктом разложения и гниения органических остатков. Следствием этого стало накопление в почве смесей различных нитратов. Но для выделения из них чистой калийной селитры требовались специальные знания химии и технологии. Считается, что первыми технологию очистки калийной селитры от добавок разработали китайцы.

Итак, родиной дымного пороха считается Китай, где, по сведениям историков, он был известен еще в конце VI – начале VII века.

Но его применение, повторяем, ограничивалось производством «ракет» для фейерверков. Для большего эффекта в порох добавляли другие вещества, не улучшавшие горение, но увеличивавшее искрение, например поваренную соль.

В Византии применялся аналог пороха – греческий огонь. Там вместо угля применялась нефть.

В 670 и 718 годах при помощи греческого огня, так утверждают историки, были уничтожены корабли арабского флота, осаждавшие Константинополь. Возможно, в составе «греческого огня» не содержалось селитры, и, соответственно, он не мог гореть без доступа воздуха.

Из разных описаний (например, «Огненная книга» Марка Грека, 1250 г.) можно сделать вывод, что в состав «греческого огня» входили смола, сера, нефть, масла. Возвратившиеся из неудачного похода на Царьград в 941 г. дружинники князя Игоря рассказывали: «У греков в руках точно молние небесное, которое они пускали трубами и жгли нас: вот почему и не одолели мы их». Вполне вероятно, что «греческий огонь» в то время уже содержал селитру, поскольку смесь, не содержащая окислителя (селитры), не могла бы гореть в трубах.

Первым европейцем, описавшим изготовление пороха примерно в 1250 г., был Роджер Бэкон. Но он зашифровал свою книгу, полностью ее смогли расшифровать только в XIX в. Примерно в то же время Марк Грек описал «гремящие» и «летающие» трубы с пороховой смесью – первые бомбы и ракеты. В 1300 г. во Фрайбурге (Германия) была отлита первая европейская пушка. В этом городе жил монах Бертольд Шварц, составивший в 1388 г. рецепт приготовления пороха высокого качества, чем и обессмертил на века свое имя.

Первый порох применялся в виде порошка – пороховой мякоти (отсюда прах, пыль), получаемой механическим смешением калиевой селитры, угля и серы в соотношении, примерно, 75:15:10. На Руси он долгое время назывался зельем. У него была низкая плотность, что затрудняло заряжание орудий и, особенно, ружей.

Огнестрельное оружие было впервые использовано в 1326 г. в Англии и Флоренции, в 1331 г. – в Германии. На Руси первое боевое применение пушек произошло в 1382 г. при обороне Москвы от орды хана Тохтамыша.

Поделиться:
Популярные книги

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Real-Rpg. Город гоблинов

Жгулёв Пётр Николаевич
1. Real-Rpg
Фантастика:
фэнтези
7.81
рейтинг книги
Real-Rpg. Город гоблинов

Хозяйка Междуречья

Алеева Елена
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Хозяйка Междуречья

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Удобная жена

Волкова Виктория Борисовна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Удобная жена