100 знаменитых ученых
Шрифт:
Совместная работа в Геттингене пошла на пользу обоим знаменитым физикам. Вместе с Максом Борном и Паскуалем Йорданом Гейзенберг заложил основы квантовой механики.
В то время физики были восхищены работой и идеями Нильса Бора, который предложил новую модель атома. Все большее число ученых занимались исследованием строения атома. Проблема строения атома заинтересовала и молодого Вернера Гейзенберга.
Еще в 1900 году Макс Планк предположил, что энергия испускается малыми дискретными порциями – квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя Макс Планк
Вместе со своим маститым учителем Максом Борном Гейзенберг начал разработку математического аппарата квантовой теории.
В мае 1925 года с Гейзенбергом случилось несчастье – у него был острый приступ сенной лихорадки. Ученый был вынужден провести несколько месяцев на маленьком островке Гельголанд, полностью изолированном от внешнего, в том числе и научного мира. И вот тут полностью оправдала себя поговорка «не было бы счастья, да несчастье помогло». За время, проведенное на острове, ученый разработал метод, который позволял разрешить проблемные моменты в модели атома Нильса Бора. По Гейзенбергу, квантовые события следовало рассматривать на другом уровне, отличном от классической физики.
Метод Гейзенберга давал возможность вычислить интенсивность спектральных линий, испускаемых простейшей квантовой системой – линейным осциллятором. Немецкий ученый произвел квантовомеханический расчет атома гелия и показал возможность его существования в двух различных состояниях. В строгом математическом представлении Гейзенберга использовались таблицы наблюдаемых величин: частот, пространственных координат и импульсов. Также Гейзенберг выработал правила, которые позволяли производить над таблицами различные математические операции.
Теория, разработанная молодым ученым, оказалась настолько сложной, что он и сам не смог полностью разобраться в ее математических основаниях. По возвращении в Геттинген Гейзенберг представил свой труд Борну, и тот, вместе с другим своим талантливым учеником – Паскуалем Йорданом, усовершенствовал его работу.
Ученые проанализировали таблицы Гейзенберга и показали, что над ними можно проводить операции, типичные для матричной алгебры. В то время матричная алгебра была уже хорошо разработана, но в физике она еще никогда не применялась.
В сентябре 1925 года Борн опубликовал статью «О квантовой механике», где представил результаты исследований и ввел термин «квантовая механика», под которым подразумевал сложный математический аппарат квантовой теории.
Учившийся в те годы в Геттингене «отец кибернетики» Норберт Винер отмечал, что честь создания квантовой механики как самостоятельного раздела науки принадлежит Гейзенбергу, но кто знает, как бы развивались события, если бы Гейзенберг не был аспирантом Макса Борна, заложившего математические основы предположений и открытий Вернера.
Получив стипендию Рокфеллеровского фонда, в 1926 году Гейзенберг отправился в Копенгаген, где начал работать с Нильсом Бором. Гейзенберг часто ездил в Геттинген к Борну, но большую часть времени проводил в Копенгагене.
Наверное, трудно представить в мире
Развитие квантовой теории не стояло на месте.
Спустя несколько месяцев после открытия Гейзенберга Эрвин Шрёдингер развил волновую механику. Ее начало можно было разглядеть в работах Луи де Бройля, который предположил наличие волновых свойств у частиц и выдвинул идею корпускулярно-волновой природы материи. Сегодня физики-теоретики чаще используют представления волновой механики, поскольку ее аппарат легче, чем аппарат матричной механики Гейзенберга.
В сентябре 1926 года Шрёдингер прибыл в Копенгаген, пытаясь переубедить Бора и доказать правоту своей теории, но в результате дискуссии ни одна из сторон не добилась успеха. Ни одну из предложенных интерпретаций квантовой механики нельзя было считать вполне приемлемой.
Макс Борн доказал, что законы физики микромира являются статичными и что волновая функция должна пониматься как комплексная величина, квадрат которой выражает вероятность того, что соответствующая частица находится в той или иной точке пространства. Он сформулировал интерпретацию функции плотности вероятности в квантовомеханическом уравнении Шрёдингера, которая позже была названа «Копенгагенской интерпретацией». Спустя некоторое время Поль Дирак развил теорию квантовой механики, включив в волновое уравнение элементы теории относительности Эйнштейна.
По воспоминаниям Гейзенберга, их совместные исследования и беседы с Бором длились до поздней ночи. Ученые провели опыты по дифракции электронов, которые подтвердили наличие корпускулярно-волнового механизма. После напряженных исследований ученым удалось совершить великие открытия – были получены соотношения неопределенностей Гейзенберга и принцип дополнительности Бора.
В 1927 году Вернер Гейзенберг опубликовал свою знаменитую работу «"Uber den anschaulichen Inhalt der quanten theoretischen Kinematik und Mechanik», в которой сформулировал «принцип неопределенности». Он стал одним из общих фундаментальных принципов квантовой механики.
Проанализировав процессы измерения координат и импульсов, ученый пришел к выводу, что измерение координаты обязательно влияет на импульс частицы, причем влияние измерения не влияет существенно на импульс. Соотношения Гейзенберга стали пределом точности для идеальных измерений (фон Неймана) и неидеальных измерений (Ландау).
По Гейзенбергу, частица, имеющая дискретный электрический заряд, ни в коем случае не может быть описана одновременно как волна и как точечная частица. Например, чем точнее выявлена позиция электрона в пространстве, тем более неопределенной становится его скорость. Чем точнее определяется частота звукового сигнала, тем сильнее теряется точность определения времени. Согласно «копенгагенской интерпретации», чем точнее исследователь определит координату частицы, тем менее точно будет известен ее импульс и т. д. Принцип неопределенности Гейзенберг применил к каждой паре сопряженных переменных.