101 головоломка
Шрифт:
Рис. 47. Красный крест из красного квадрата.
53. Из лоскутков
У другой сестры милосердия были такие обрезки красной материи, какие изображены на рис. 48.
Рис. 48. Красный крест из лоскутьев.
Сестра ухитрилась, не разрезав этих лоскутьев, сшить из них крест. Каким образом?
54. Два
У третьей сестры милосердия имелся готовый красный крест из материи, но он был чересчур велик, и она вырезала из него другой, поменьше.
Вырезав крест, сестра собрала обрезки – их оказалось всего 4 – и решила, что из них можно, не разрезая ни одного лоскутка, сшить еще один крест и притом точно такой же величины, как первый.
Рис. 49. Два красных креста из одного большого.
А значит, вместо одного креста у нее оказалось два поменьше одинаковой величины – один цельный, другой составной. Можете ли вы показать, как сестра это сделала?
55. Лунный серп
Фигуру лунного серпа (рис. 50) требуется разделить на 6 частей, проведя всего только две прямые линии.
Как это сделать?
Рис. 50. Лунный серп.
56. Деление запятой
Вы видите здесь широкую «запятую» (рис. 51) – Она построена очень просто: на прямой АВ описан полукруг, а затем на каждой половине АВ описаны полукруги – один вправо, другой влево.
Задача состоит в том, чтобы разрезать запятую одной кривой линией на две совершенно одинаковые части.
Рис. 51. Деление «запятой» на две равные (по площади) части.
Фигура эта интересна еще и тем, что из двух таких фигур можно составить круг. Каким образом?
57. Развернуть куб
Если вы разрежете картонный куб вдоль ребер так, чтобы его можно было разогнуть и положить всеми 6-ю квадратами на стол, то получите фигуру вроде трех следующих:
Любопытно сосчитать: сколько различных фигур можно получить таким путем? Другими словами, сколькими способами можно развернуть куб на плоскости? Предупреждаю нетерпеливого читателя, что различных фигур не менее двенадцати. Различными условимся считать две развертки, которые не совпадают при наложении друг с другом или одной из них с ее зеркальным отражением.
Рис. 52. Куб и его развертки.
58. Составить квадрат
Можете ли вы составить квадрат из пяти кусков бумаги, показанных на рис. 53?
Если вы догадались, как решить эту задачу, попробуйте составить квадрат из пяти одинаковых треугольников той же формы, что и те, с которыми вы сейчас имели дело (один катет вдвое длиннее другого, рис. 54). Вы можете разрезать один треугольник на две части, но остальные четыре должны идти в дело целыми.
Рис. 53.
Рис. 54. Еще одна заготовка для квадрата.
59. Четыре колодца
На квадратном участке земли имеются четыре колодца: три рядом, близ края участка, и один в углу (рис. 55) – Участок перешел к четырем арендаторам, которые решили разделить его между собой, но так, чтобы у всех были участки совершенно одинаковой формы и чтобы на каждом из них находился колодец.
Рис. 55. Как разделить землю и колодцы?
Можно ли это сделать?
60. Куда девался квадратик?
В заключение наших занятий с разрезанием фигур покажу читателю интересный пример разрезания, при котором неизвестно куда исчезает кусочек фигуры.
На клетчатой бумаге вычерчиваю квадрат, заключающий 64 маленьких квадратика. Затем провожу косую линию слева направо, начиная с той точки вверху, где сходятся первый и второй квадратики, и кончая правым нижним углом большого квадрата.
Рис. 56. Куда исчез один квадратик?
Противоположный конец этой косой линии разрежет пополам последний квадратик справа, и в нем образуются два треугольничка. Нижний треугольничек обозначим буквой С. Всю левую часть чертежа обозначим буквой А, правую – буквой В. Теперь разрезаю чертеж по косой линии и двигаю правую часть косо вверх по разрезу так, чтобы эта часть поднялась на один ряд квадратиков. Вверху окажется при этом маленький пустой треугольничек, а внизу направо будет выдаваться треугольничек С. Беру ножницы, отрезаю выступающий маленький треугольничек С и помещаю его вверху – там, где остался незанятый треугольник. Он приходится сюда как раз впору. У нас получился прямоугольник, имеющий 7 квадратиков в высоту и 9 квадратиков в ширину. Но 7 х 9 = 63. Значит, наш прямоугольник заключает теперь всего 63 квадратика, между тем как прежде их было 64. Куда же девался один квадратик?
Решения задач 51-60
51. Нужно разрезать флаг по ступенчатой линии, обозначенной на рис. 57а.
Теперь остается только передвинуть нижнюю часть флага вверх на одну ступеньку и сшить. Получается флаг уже не с 12 полосами, а с 10, рис. 57б. Он стал более продолговатым, но ни одного клочка материи не пропало.
Рис. 57 а, б. Как разрезать и перекроить пиратский флаг.
52. Сестра разрезала квадратный кусок материи на 4 части так, как показано на рис. 58а. Пунктиром обозначены линии разреза от вершин квадрата к середине его сторон.