Алгоритмы разума
Шрифт:
Рис. 18. Типичная динамическая характеристика связи между элементами А и Б. Повышенная проходимость связи остается после прекращения возбуждения элемента А (заштрихованный участок на оси времени). — остаточная проходимость связи, определяющая «вклад» связи в постоянную память.
В конце концов может остаться лишь очень обобщенная модель предмета, однако при этом сохраняется воспоминание о самом факте детального изучения объекта, знание о том, что он был изучен подробно. Видимо, это обобщенная модель самого процесса переключения настройки «глаза».
Образ предмета запечатлевается не в одном кадре памяти, а целой их
Если объект не имел ценности и картина его не вспоминается повторно, то образ совершенно исчезает из памяти, поскольку для проторения первично возникающих связей необходима повторная активация элементов модели. Но, так или иначе, с течением времени происходит закономерное «освобождение» памяти, потому что запомненная картина-модель всегда значительно упрощена по сравнению с воспринимаемой и, следовательно, не занимает все элементы «рецепторного поля».
При восприятии изменяющейся картины рецепторы повторно подключаются к предмету, в результате получается новая серия моделей-кадров, имеющая связи с первой.
В соответствии с этой гипотезой кратковременная и длительная память реализуется на одних и тех же элементах «нейронной сети» в одном рецепторном поле, первая — за счет активности элементов, вторая — за счет развития связей. Переход между ними возможен в виде кратковременной памяти связей. Последняя задается характеристикой изменения проходимости связи во времени по такому же типу, как и характеристика изменения активности элемента, но удлиненной во времени и уменьшающейся не до нуля, а до некоторой остаточной величины, определяющей «вклад» связи в длительную память. При повторном использовании данной связи такие «вклады» (.) накапливаются и определяют прочность памяти (рис. 18). Если модель повторно не возбуждается, то связи не функционируют, и их проходимость уменьшается. Повторная активация модели сопровождается тренировкой ее элементов, что выражается в изменении ее статической и динамической характеристик, а также в повышении уровня спонтанной, собственной «активности покоя» модели.
Рис. 19. Схема постепенного забывания и сокращения модели объекта, первоначально состоящей из серии кадров с разной обобщенностью и детальностью,— линия а. Менее значимые и похожие детали заменяются одной — линия б. Потом остаются только две крайние модели (линия в) и, наконец, лишь одна обобщенная модель г.
На рис. 19 показаны этапы забывания и постепенного сокращения модели, так что в результате остается только несколько обобщенных и связанных с ней «частных» моделей, характеризующих объект лишь в отношении его значимости, то есть полезности.
Разумеется, для того чтобы с помощью элементов одного «рецепторного поля» запоминать все новые и новые модели, нужно допустить наличие большого количества кадров. Кроме того, необходимо предположить торможение моделей как состояние, противоположное активности, возбуждению. Торможение — отрицательная активность, требующая для своего преодоления дополнительной «мощности», идущей по связи от внешнего источника — рецептора или соседнего возбужденного элемента.
О реализации гипотезы
Наша гипотеза предполагает строение «рецепторного поля» в виде сети из элементов с неограниченно большим количеством связей. Примерно такая структура имеет место в коре мозга. Воспроизвести ее техническими средствами пока не представляется возможным, разве что в очень ограниченных пределах, которые едва ли смогут обеспечить демонстративность устройства. Все надежды на алгоритмический интеллект.
В АИ все виды памяти должны существовать раздельно. Время нужно делить на такты и все расчеты активности моделей и проходимости связей осуществлять «ступенчато», от такта к такту. Первый вид памяти в АИ — это картина с рецептора. Она существует очень короткое время и считывается, перекодируется по определенным правилам, которые еще нужно создать. Получается ряд цифр, отражающих как саму структуру объекта, так и перечисленные выше параметры модели. Главный из них — это уровень активности
Длительная память в АИ выражена «фразами», перешедшими из кратковременной памяти. Сейчас трудно представить всю организацию массива памяти. Думаю, что он должен состоять из большого числа «словарей фраз», построенных из 2—4 «слов» каждая. Во «фразах» будут широко использоваться обобщенные модели.
В СИ все модели постоянно сохраняют хотя бы минимальную активность, вследствие чего связи между ними постоянно изменяются. Это очень затрудняет воспроизведение СИ на ЦВМ, поскольку с увеличением объема сетей катастрофически возрастает объем расчетов. АИ позволяет уменьшить расчеты за счет удлинения интервалов времени между пересчетами связей массива длительной памяти.
Действия с моделями
Здесь мы рассмотрим только важнейшие действия с моделями. К ним можно отнести действия активации моделей, их сравнения, а также дописывания «фразы» и обобщения моделей.
Активация моделей
В памяти находится масса моделей, составленных из «слов», «фраз», «букв» разных «алфавитов». Модели объединены связями, по которым они взаимодействуют друг с другом. Большинство моделей находится в неактивном состоянии. В частности, это касается всех моделей длительной памяти АИ и в меньшей степени — СИ, в котором нет разделения активной и пассивной (кратковременной и длительной) памяти. Деятельность интеллекта связана с активацией новых моделей в длительной памяти и постепенным затуханием активности моделей в кратковременной памяти. В мозге и в ИИ на физических сетях каждый элемент модели — нейрон — или целую модель — ансамбль из нейронов — можно представить как генератор специальной («нервной») энергии, возникающей в ответ на действие такой же энергии, которая поступает по связям от других моделей. Генератор работает по статическим и динамическим характеристикам, подобным показанным на рис. 8 и 9. Энергия передается по связям на другие модели; количество ее определяется проходимостью связи.
Активное состояние модели можно назвать физиологическим термином «возбуждение». В нейронах мозга оно выражается частотой импульсов, в СИ на физических сетях — это электрический потенциал. В ИИ, моделируемом на цифровых машинах, уровень активности моделей — это главный параметр, «буква», выраженная числом, и его нужно пересчитывать для каждого временного такта по статическим и динамическим характеристикам. Впрочем, для АИ это касается только моделей в кратковременной памяти. Операции активирования моделей могут быть двух видов: извлечение модели из длительной памяти с расчетом ее активности или пересчет уровня активности модели, уже находящейся в кратковременной памяти, если она получает дополнительный импульс по связям от другой модели.
В СИ выбор новой модели для активации определяется структурой связей, идущих от активной модели. В АИ новая модель вызывается из длительной памяти по «адресу», записанному в «словаре фраз», в котором первым «словом» является уже возбужденная модель. Например, есть «словарь» предмет—действие, в нем есть модель «хлеб», ей соответствует модель действия «жевать». Последняя и будет вызвана, если в оперативной (кратковременной) памяти содержится возбужденное «слово» «хлеб». Уровень активности модели «жевать» будет подсчитан, исходя из статической характеристики коэффициента проходимости связи, записанного в «словаре», и активности модели «хлеб».