Чтение онлайн

на главную

Жанры

Андрей Сахаров. Наука и свобода
Шрифт:

Космология тогда была далека от того, чем жила физика.

Возможность говорить о Вселенной как физическом объекте открыл в 1917 году Эйнштейн на основе своей теории гравитации, соединившей ньютоновский закон всемирного тяготение и теорию относительности. Но в последующие четыре десятилетия космология по существу давала лишь возможность говоритьна математическом языке, а не делать физические измерения и сравнивать их с предсказаниями теории — как должно быть в физической науке.

За эти десятилетия космология получила в свое распоряжение лишь один измерительный факт — хотя и очень важный. И биография этого факта красноречиво говорит о том, насколько необычна физика самого большого природного объекта — Вселенной.

Факт

был предсказан в 1922 году. Предсказал его Александр Фридман (1888—1925) — российский математик, увлеченно следивший за революционным обновлением физики. Посмотрев глазами математика на космологическую теорию Эйнштейна, он понял, что великий физик нашел лишь одно — очень частное — решение своих уравнений. Если бы речь шла о маятнике, можно было бы сказать, что Эйнштейн нашел растяжение подвеса, когда маятник висит неподвижно. Однако маятнику свойственно и движение. И Фридман, основываясь на уравнениях Эйнштейна, описал «движение» космологического маятника — Вселенной. Оказалось, что Вселенная может расширяться, то есть что составляющие ее галактики могут удаляться друг от друга.

Статью о своем открытии, названную не особенно красноречиво «О кривизне пространства», Фридман послал весной 1922 года в немецкий физический журнал — послал из разоренного гражданской войной Петрограда (еще не переименованного в Ленинград).

Результат русского автора, в физике совершенно неизвестного, настолько не лез ни в какие астрономические ворота, что Эйнштейну легче было заподозрить математическую ошибку в рассуждениях автора. Так он и написал в своей заметке, опубликованной в следующем выпуске того же журнала, и это знаменитая ошибка самого Эйнштейна. Вскоре он в этом убедился и опубликовал вторую заметку, назвав результаты Фридмана «правильными и проливающими новый свет».

Но не этот теоретический свет помог космологии сделать следующий шаг, а крайне слабый свет от далеких небесных туманностей. Их изучал американский астроном Эдвин Хаббл с помощью телескопа. Он не занимался ни гравитацией, ни кривизной пространства, ему хватало забот со своими туманностями, в которых он сначала распознал далекие скопления звезд — галактики, а затем обнаружил, что эти галактики удаляются от нашей родной Галактики — Млечного пути.

По изменению тона гудка локомотива, мчащегося мимо наблюдателя, можно судить о его скорости. Искусный наблюдатель, каким был Хаббл, может измерить скорости далеких галактик по их слабому свету. И при этом обнаружить удивительный факт: чем дальше галактика, тем с большей скоростью она удаляется. Этот наблюдательный факт, открытый в 1929 году, получил название «закон Хаббла».

Теоретики, следившие и за астрономией, и за физикой, тут же сообразили, что этот закон и есть предсказанное Фридманом расширение Вселенной. То был космологический триумф теоретической физики.

Беда, однако, в том, что никаких других подобных триумфов не было после этого еще три десятилетия. Астрономы лишь уточняли измерения Хаббла.

В самом законе Хаббла сомневаться не приходилось, но некоторым теоретикам неуютно жилось в расширяющейся Вселенной, и они стали искать иное объяснение для хаббловских наблюдений. Искали и нашли его в мутноватой воде новейшей микрофизики. Выглядело это объяснение как старение частиц света — фотонов — за огромное время их путешествия от далеких галактик к Земле. Маленький эффект распада фотонов заменял грандиозную картину Вселенной, разлетающейся во все стороны.

Однако эту уютную гипотезу красиво и убедительно опроверг в 1936 году — на основе глубокого понимания и микрофизики, и космологии — российский теоретик Матвей Бронштейн.

В результате эмпирическая опора космологии стала крепче, но все равно одной точки опоры маловато для устойчивого равновесия. Это было совершенно не похоже на другие части теоретической физики, которые опирались на сотни, тысячи разнообразных измерений.

К этому добавлялось то, что ни космология, ни гравитация не требовались тогда при исследовании строения вещества. В микрофизике действуют силы, превосходящие гравитацию в невообразимое число раз. Число это округленно содержит 40 знаков. Только если собрать в одном месте столь же астрономическое количество частиц, учет гравитации может понадобиться. Но тем самым мы из физики попадаем в область астрономии.

И наконец, в теории гравитации и космологии требовался особый математический язык, долгое время не нужный в других областях теоретической физики.

Все эти обстоятельства, вместе взятые, делали космологию в лучшем случае уважаемой, но чудаковатой дальней родственницей всех других членов физического семейства. Считанным теоретикам хватало сил и пытливости, чтобы поддерживать профессиональные отношения и с космологией, и с физикой микромира. Среди этих считанных был, правда, и Ландау, включивший изложение теории гравитации в свой знаменитый «Курс теоретической физики».

Это, видимо, помогло и начинающему теоретику Сахарову уже в 40-е годы держать в поле зрения оба края физической ойкумены. В тетради, где он отмечал заинтересовавшие его статьи, рядом с новостями тогдашней микрофизики можно увидеть и запись о расширяющейся Вселенной из главного тогда — американского— журнала Physical Riveiw за 1949 год. [351] Перемещение на Объект и спецфизика заслонили эту экзотику на годы.

В начале 60-х годов, неожиданно для многих, космология из чудаковатой старой девы преобразилась в юную волнующе-загадочную особу. И уже в 1967 году Зельдович вместе со своим сотрудником выпустил книгу, подытожив первые годы бурной физической молодости космологии. [352] В книге, в частности, изложена работа Матвея Бронштейна 30-х годов по физической космологии, хотя к тому времени сомнений в расширении Вселенной практически уже не оставалось после открытия в 1965 году космического фонового радиоизлучения, равномерно наполняющего Вселенную.

351

Фейнберг Е.Л. Для будущего историка // Он между нами жил… Воспоминания о Сахарове, с. 659—60.

352

Зельдович Я.Б., Новиков И.Д. Релятивистская астрофизика. М.: Наука, 1967, с. 654.

Это замечательное явление, подобно хаббловскому разбеганию галактик, было тоже предсказано (Гамовым в 1948 году) и тоже обнаружено случайно. Космическое излучение было того же характера, как тепло, идущее от печки. Только печки, «нагретой» до температуры минус 270C, всего на три градуса выше абсолютного нуля. Не зря искусство экспериментаторов было отмечено Нобелевской премией. А теоретикам это радиоизлучение говорило не просто о расширении Вселенной, но нечто о начале этого расширения.

Если сейчас галактики разбегаются, то, значит, раньше они были ближе друг к другу и, значит, когда-то образовывали сплошное вещество, не разделенное космическими пространствами, разогретое до огромных температур и, соответственно, пропитанное интенсивным излучением. То непонятное, что происходило тогда — миллиарды лет назад — назвали Большим взрывомили рождением Вселенной. По мере расширения Вселенной излучение остывало. За миллиарды лет остыло в миллиарды раз. Но всё же высокочувствительные приборы обнаружили этот реликт Большого взрыва, отсюда и название — реликтовое излучение.

Кроме этого — самого впечатляющего и уж во всяком случае самого космологического открытия — в 60-е годы астрофизики открыли и несколько других замечательных явлений. В словарь науки вошли новые понятия: квазар, пульсар, черная дыра.

И в эту область, где новейшие открытия соединялись с теоретическими загадками немыслимо далекого прошлого, вошел — ворвался Зельдович, опубликовав свою первую работу по космологии в 1961 году. «Вслед за ним о «большой космологии» стал думать» и Сахаров. К тому времени Зельдович был уже автором нескольких десятков работ по фундаментальной физике, он практически не прерывал свое общение с чистой наукой. А Сахаров был сосредоточен на спецфизике.

Поделиться:
Популярные книги

Начальник милиции

Дамиров Рафаэль
1. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

На руинах Мальрока

Каменистый Артем
2. Девятый
Фантастика:
боевая фантастика
9.02
рейтинг книги
На руинах Мальрока

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Кодекс Охотника. Книга XXII

Винокуров Юрий
22. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXII

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Защитник

Кораблев Родион
11. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Защитник

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Наизнанку

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Наизнанку

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6