Аппаратные интерфейсы ПК. Энциклопедия
Шрифт:
Кроме защищенного режима, в процессоре 80286 имеется и реальный режим, в котором процессор ведет себя почти так же, как и 8086 (но более быстрый). Здесь физический адрес вычисляется так же, как и в 8086/88, но из-за ошибки разработчиков та самая единица в бите A20, которая отбрасывалась в процессорах 8086/88, теперь попадает на шину адреса, и в результате максимально доступный физический адрес в реальном режиме достиг 10FFEFh. Для обеспечения полной совместимости с процессором 8086/88 в схему PC ввели вентиль линии A20 шины адреса — GateA20, который либо пропускает сигнал от процессора, либо принудительно обнуляет линию A20 системной шины адреса. Этот вентиль должен быть открыт при работе в защищенном режиме, а также когда в реальном режиме нужны дополнительные (64 К-16) байт памяти. Вентиль управляется через контроллер клавиатуры (см. п. 8.1.2) или иным специфическим способом.
В 32-разрядных процессорах, начиная с 80386, сохранена та же идея обращения к памяти с участием сегментных регистров (16-разрядных), но регистры процессора, участвующие в формировании адреса, позволяют адресовать уже 2³² = 4 Гбайт памяти в каждом сегменте. Базовый адрес
Для виртуализации памяти (и защиты) в 32-разрядных процессорах применяется иной механизм, основанный на блоке страничной переадресации — принципиальной новинке 32-разрядных процессоров х86. В его задачу входит отображение 32-разрядного линейного адреса (продукта блока сегментации) на 32- или 36-разрядный физический адрес, формируемый на системной шине процессора при его обращениях к памяти. В отличие от блока сегментации, оперирующего блоками разного размера (сегментами), блок страничной переадресации оперирует страницами одинакового размера. Переадресация выполняется на основе таблиц страниц, где для каждой страницы логической памяти имеется свой описатель. В этом описателе имеется признак присутствия страницы в физической памяти, и для присутствующих страниц указывается базовый адрес физического отображения. Кроме того, имеются биты, управляющие доступом к странице по чтению и записи с различных уровней привилегий, возможностью ее кэширования, и некоторые служебные биты. При обращении программы к отсутствующей странице процессор вырабатывает исключение, обработчик которого занимается подкачкой нужной страницы из внешней памяти (с диска) в ОЗУ. Этот обработчик и реализует виртуальную память с подкачкой страниц по запросу (Demand-Paged Virtual Memory), которая в настоящее время обычно и подразумевается под виртуальной памятью. При недостатке свободного места в физической памяти обработчик выполняет и замещение страниц, по его мнению, наименее нужных, выгружая их на диск. Создав несколько наборов описателей страниц, можно получить несколько виртуальных адресных пространств, каждое из которых имеет размер до 4 Гбайт, причем страницы разных пространств могут быть полностью изолированы друг от друга, а могут и частично пересекаться. В многозадачной ОС каждая задача (виртуальная машина) имеет собственное (как ей представляется) адресное пространство.
Первоначально блок страничной переадресации работал со страницами размером 4 Кбайт. В дополнение к этому базовому механизму в процессор Pentium ввели возможность работы и со страницами размером 4 Мбайт (режим PSE). В ряде процессоров P6 разрядность физического адреса увеличена до 36 бит, и все процессоры P6 имеют возможность включение режима переадресации РАЕ, позволяющего отображать страницы размером 4 Кбайт и 2 Мбайт с расширением физического адреса. С процессорами Pentium III появился режим преобразования PSE-36, в котором блок оперирует 4-Мбайтными страницами в 36-битном физическом пространстве и сохраняется возможность работы со стандартными 4-Кбайтными страницами базового режима. Это позволяет довольно эффективно управляться с современными объемами физической памяти компьютера.
В стандартном реальном режиме 32-разрядные процессоры работают с памятью так же, как и 80286, с возможностью адресации в диапазоне 0-10FFEFh, причем вентиль Gate A20 ввели уже в сам процессор. Физический адрес вычисляется с участием сегментных регистров, размер непрерывного сегмента — 64 Кбайт. По умолчанию в реальном режиме адреса формируются с использованием только младших 16 бит 32-разрядных регистров, правда, для каждой инструкции можно с помощью префиксов изменить разрядность адресных компонентов на 32 бита. Однако и при этом невозможно пересечь границу 64-Кбайтного сегмента — сработает исключение защиты. В стандартном реальном режиме блок страничной переадресации не работает, и физический адрес совпадает с линейным. С помощью временного переключения в защищенный режим можно настроить таблицы страниц, разрешить преобразование и далее в реальном режиме задействовать страничное преобразование. Этот трюк используется менеджерами памяти типа EMM386 для работы со свободными блоками UMA.
Есть и еще один режим, неофициальный, но тоже работающий на всех 32-разрядных процессорах х86, — «нереальный» (unreal), он же «большой реальный» (big real). Он позволяет процессору в реальном режиме обращаться к данным, расположенным в любом месте 4-Гбайтного пространства линейных (и физических) адресов. Этот режим базируется на логике блока сегментации, которая при вычислении линейного адреса во время обращений к памяти пользуется скрытыми программно-недоступными регистрами дескрипторов сегментов. Из этих регистров
Итак, самые широкие возможности адресации имеются в защищенном 32-разрядном режиме, наиболее естественном для современных процессоров. В этом режиме может использоваться как плоская, так и сегментная модели памяти. Под плоской (flat) понимается модель, в которой все сегментные регистры указывают на один и тот же сегмент памяти (как правило, начинающийся с нулевого адреса), и его лимит может достигать 4 Гбайт, что позволяет адресовать этот немалый (даже по нынешним меркам) объем памяти без манипуляций сегментными регистрами. Однако при этом теряются все возможности виртуализации памяти на основе сегментов, а также отсутствует сегментная защита. В сегментной модели памяти сегментные регистры кода, стека и данных настраиваются на разные, возможно и не пересекающиеся сегменты. Здесь имеются все возможности сегментной защиты и сегментной виртуализации памяти. Поскольку современным приложениям пока достаточно 4 Гбайт памяти (надолго ли?), сегментную модель ради упрощения диспетчера памяти стараются не использовать. Защита памяти имеется и на уровне страниц, правда, не такая развитая и надежная, как сегментная.
12.5.2. Проблемы страничной переадресации
В реальном режиме (при отключенной страничной переадресации) логический адрес, формируемый прикладной программой, совпадает с физическим адресом, фигурирующим на шинах расширения. Тут все просто, правда, в стандартном (а не большом) реальном режиме доступен только первый мегабайт адресов (только устройства в области UMA).
В защищенном режиме в принципе доступно все физическое адресное пространство, но появляются проблемы, связанные с отображением логических адресов на физические. Отображением (поддержкой таблиц переадресации) ведает ОС, приложения могут только узнать карту отображений (получить список физических адресов страниц для какой-то области своей виртуальной памяти). Какие-то области могут в данный момент и не присутствовать в ОЗУ (они могут быть выгруженными на диск). У драйверов устройств возможностей больше — они могут запросить блок памяти с последовательными физическими страницами и потребовать фиксации определенных страниц (запретить их выгрузку из ОЗУ).
При организации прямого доступа к памяти, как по стандартным каналам DMA, так и используя ведущие устройства шин ISA и PCI, возникает проблема пересечения границ страниц. Если приложение хочет выполнить обмен по DMA с областью доступной ей памяти непосредственно, то оно должно запросить у ОС физический адрес, которому соответствует логический адрес предполагаемого буфера обмена. Именно этот физический адрес должен задаваться устройству, выполняющему DMA, при инициализации сеанса обмена (указании начального адреса, длины блока и запуске канала). В каждом сеансе обмена не должна пересекаться граница страницы, которой оперирует блок страничной переадресации, поскольку следующая логическая страница может иметь физическое отображение в произвольном (относительно предыдущей страницы) месте. Чаще всего ОС оперирует страницами по 4 Кбайт, при этом пересылка больших блоков данных ведется «короткими перебежками», между которыми процессор должен выполнять повторную инициализацию DMA. Эта проблема решается усложнением контроллеров DMA — применением «разбросанной записи» в память (scatter write) и «собирающего чтения» памяти (gather read). Контроллеру DMA задается список описателей блоков (начальный адрес и длина). Отработав очередной блок памяти, контроллер переходит к следующему, и так до конца списка. Такие возможности имеет, например, стандартный контроллер PCI IDE (см. п. 9.2.1). Стандартный контроллер DMA имеет и другую «страничную проблему», связанную с реализацией регистров страниц (см. п. 12.4).
Проблема пересечения границ может решаться и иначе, без усложнения контроллера DMA. Для этого в памяти резервируется буфер значительного размера, отображенный на непрерывную область физической памяти, и обмен данными физическое устройство выполняет только с этим буфером. Однако такой буфер рядовое приложение создать не может; он может быть организован лишь драйвером устройства. Приложения могут только получать указатели на этот буфер и обмениваться с ним данными. Таким образом, по пути от приложения к устройству появляется дополнительная «перевалочная база» (буфер драйвера) и дополнительная пересылка данных, что приводит к дополнительным затратам времени.