Чтение онлайн

на главную - закладки

Жанры

Архитектура операционной системы UNIX
Шрифт:

Рисунок 10.10. Символьный блок

Ядро обеспечивает ведение списка свободных символьных блоков и выполняет над символьными списками и символьными блоками шесть операций.

1. Ядро назначает драйверу символьный блок из списка свободных символьных блоков.

2. Оно также возвращает символьный блок в список свободных символьных блоков.

3. Ядро может выбирать первый символ из символьного списка: оно удаляет первый символ из первого символьного блока в списке и устанавливает значения счетчика символов в списке и указателей в блоке таким образом, чтобы последующие операции не выбирали один и тот же символ. Если в результате операции выбран последний символ блока, ядро помещает в список свободных символьных блоков

пустой блок и переустанавливает указатели в символьном списке. Если в символьном списке отсутствуют символы, ядро возвращает пустой символ.

4. Ядро может поместить символ в конец символьного списка путем поиска последнего символьного блока в списке, включения символа в него и переустановки адресов смещений. Если символьный блок заполнен, ядро выделяет новый символьный блок, включает его в конец символьного списка и помещает символ в новый блок.

5. Ядро может удалять от начала списка группу символов по одному блоку за одну операцию, что эквивалентно удалению всех символов в блоке за один раз.

6. Ядро может поместить блок с символами в конец символьного списка.

Символьные списки позволяют создать несложный механизм буферизации, полезный при небольшом объеме передаваемых данных, типичном для медленных устройств, таких как терминалы. Они дают возможность манипулировать с данными с каждым символом в отдельности и с группой символьных блоков. Например, Рисунок 10.11 иллюстрирует удаление символов из символьного списка; ядро удаляет по одному символу из первого блока в списке (Рисунок 10.11а-в) до тех пор, пока в блоке не останется ни одного символа (Рисунок 10.11 г); затем оно устанавливает указатель списка на следующий блок, который становится первым блоком в списке. Подобно этому на Рисунке 10.12 показано, как ядро включает символы в символьный список; при этом предполагается, что в одном блоке помещается до 8 символов и что ядро размещает новый блок в конце списка (Рисунок 10.12 г).

Рисунок 10.11. Удаление символов из символьного списка

Рисунок 10.12. Включение символов в символьный список

10.3.2 Терминальный драйвер в каноническом режиме

Структуры данных, с которыми работают терминальные драйверы, связаны с тремя символьными списками: списком для хранения данных, выводимых на терминал, списком для хранения неструктурированных вводных данных, поступивших в результате выполнения программы обработки прерывания от терминала, вызванного попыткой пользователя ввести данные с клавиатуры, и списком для хранения обработанных входных данных, поступивших в результате преобразования строковым интерфейсом специальных символов (таких как символы стирания и удаления) в неструктурированном списке.

Когда процесс ведет запись на терминал (Рисунок 10.13), терминальный драйвер запускает строковый интерфейс. Строковый интерфейс в цикле считывает символы из адресного пространства процесса и помещает их в символьный список для хранения выводных данных до тех пор, пока поток данных не будет исчерпан. Строковый интерфейс обрабатывает выводимые символы, например, заменяя символы табуляции на последовательности пробелов. Если количество символов в списке для хранения выводных данных превысит верхнюю отметку, строковый интерфейс вызывает процедуры драйвера, пересылающие данные из символьного списка на терминал и после этого приостанавливающие выполнение процесса, ведущего запись. Когда объем информации в списке для хранения выводных данных падает за нижнюю отметку, программа обработки прерываний возобновляет выполнение всех процессов, приостановленных до того момента, когда терминал сможет принять следующую порцию данных. Строковый интерфейс завершает цикл обработки, скопировав всю выводимую информацию из адресного пространства задачи в соответствующий символьный список, и вызывает выполнение процедур драйвера, пересылающих данные на терминал, о которых уже было сказано выше.

алгоритм terminal_write

{

 do while(из пространства задачи еще поступают данные)
 {

if (на терминал поступает информация) 
{

приступить к выполнению операции записи данных из списка, хранящего выводные данные;

приостановиться (до того момента, когда терминал будет готов принять следующую порцию
данных);

continue; /* возврат к началу цикла */

}

скопировать данные в объеме символьного блока из пространства задачи в список, хранящий выводные данные: строковый интерфейс преобразует символы табуляции и т. д.;

 }

 приступить к выполнению операции записи данных из списка, хранящего выводные данные;

}

Рисунок 10.13. Алгоритм переписи данных на терминал

'Если на терминал ведут запись несколько процессов, они независимо друг от друга следуют указанной процедуре. Выводимая информация может быть искажена; то есть на терминале данные, записываемые процессами, могут пересекаться. Это может произойти из-за того, что процессы ведут запись на терминал, используя несколько вызовов системной функции write. Ядро может переключать контекст, пока процесс выполняется в режиме задачи, между последовательными вызовами функции write, и вновь запущенные процессы могут вести запись на терминал, пока первый из процессов приостановлен. Выводимые данные могут быть также искажены и на терминале, поскольку процесс может приостановиться на середине выполнения системной функции write, ожидая завершения вывода на терминал из системы предыдущей порции данных. Ядро может запустить другие процессы, которые вели запись на терминал до того, как первый процесс был повторно запущен. По этой причине, ядро не гарантирует, что содержимое буфера данных, выводимое в результате вызова системной функции write, появится на экране терминала в непрерывном виде.

char form[]="это пример вывода строки из порожденного процесса";

main {

 char output[128];

 int i;

 for (i = 0; i ‹ 18; i++) {

switch (fork) {

case -1: /* ошибка — превышено максимальное число процессов */

exit;

default: /* родительский процесс */

break;

case 0: /* порожденный процесс */

/* формат вывода строки в переменной output */

sprintf(output, "%%d\n%s%d\n", form, i, form, i);

for (;;) write(1, output, sizeof(output));

}

 }

}

Рисунок 10.14. Передача данных через стандартный вывод

Рассмотрим программу, приведенную на Рисунке 10.14. Родительский процесс создает до 18 порожденных процессов; каждый из порожденных процессов записывает строку (с помощью библиотечной функции sprintf) в массив output, который включает сообщение и значение счетчика i в момент выполнения функции fork, и затем входит в цикл пошаговой переписи строки в файл стандартного вывода. Если стандартным выводом является терминал, терминальный драйвер регулирует поток поступающих данных. Выводимая строка имеет более 64 символов в длину, то есть слишком велика для того, чтобы поместиться в символьном блоке (длиной 64 байта) в версии V системы. Следовательно, терминальному драйверу требуется более одного символьного блока для каждого вызова функции write, иначе выводной поток может стать искаженным. Например, следующие строки были частью выводного потока, полученного в результате выполнения программы на машине AT&T 3B20:

this is a sample output string from child 1

this is a sample outthis is a sample output string from child 0

Чтение данных с терминала в каноническом режиме более сложная операция. В вызове системной функции read указывается количество байт, которые процесс хочет считать, но строковый интерфейс выполняет чтение по получении символа перевода каретки, даже если количество символов не указано. Это удобно с практической точки зрения, так как процесс не в состоянии предугадать, сколько символов пользователь введет с клавиатуры, и, с другой стороны, не имеет смысла ждать, когда пользователь введет большое число символов. Например, пользователи вводят командные строки для командного процессора shell и ожидают ответа shell'а на команду по получении символа возврата каретки. При этом нет никакой разницы, являются ли введенные строки простыми командами, такими как "date" или "who", или же это более сложные последовательности команд, подобные следующей:

Поделиться:
Популярные книги

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

An ordinary sex life

Астердис
Любовные романы:
современные любовные романы
love action
5.00
рейтинг книги
An ordinary sex life

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Беглец

Кораблев Родион
15. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Беглец

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Авиатор: назад в СССР 12

Дорин Михаил
12. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 12

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели