Чтение онлайн

на главную

Жанры

Астероидно-кометная опасность: вчера, сегодня, завтра
Шрифт:

где r0 = 2,808 а.е., k = 4,6142, n = 5,093, m = 2,15, = 0,1113.

Марсден [Marsden et al., 1973] применил эту зависимость для нахождения негравитационных параметров многих комет. В дальнейшем за этим методом закрепилось название «метод Марсдена». В этом методе составляющие негравитационного возмущающего ускорения в орбитальной системе координат направлены соответственно по радиус-вектору, перпендикулярно радиус-вектору в плоскости орбиты и перпендикулярно к плоскости орбиты:

ai = Gig(r), Gi = Ai e– Bi (i = 1, 2, 3),

где Ai, Bi —

постоянные, определяемые из наблюдений для каждой кометы, — время, прошедшее от начальной эпохи. В настоящее время этот метод активно используется при моделировании действий негравитационных ускорений.

Негравитационные ускорения могут изменять период обращения кометы на величину до нескольких дней. Так, например, орбита кометы Галлея, полученная по наблюдениям 1835 и 1910 гг. без учета негравитационных эффектов, дает ошибку в моменте прохождения кометой перигелия в 1759 г. в 4,3 сут. Для расчетов возможного столкновения кометы с Землей такая ошибка является существенной.

Недостаточно точное знание негравитационных эффектов в движении комет является одной из основных причин, до настоящего времени затрудняющих описание динамики многих комет. Подробные исследования негравитационных ускорений в движении комет были проделаны Секаниной в работах [Sekanina, 1979; 1986], в которых рассматривались различные возможные механизмы, вызывающие отклонение движения комет от гравитационного закона. Им же выдвигались предположения, что эти отклонения могут быть вызваны взрывным процессом, проявляющимся «толчком», заметным в движении кометного ядра. Секанина предложил наряду с орбитальным учитывать и вращательное движение кометного ядра.

Однако негравитационное ускорение является не единственным фактором, влияющим на точность определения орбит комет. Как уже отмечалось, в результате сублимации вещества с поверхности кометы в кому выносится большое количество газа и пыли. Это вещество окружает ядро достаточно плотным облаком, центр яркости которого далеко не всегда совпадает с ядром кометы. Это явление получило в научной литературе название смещения фотоцентра кометы. Впервые оно было зафиксировано визуально во время наблюдения кометы Свифта — Туттля (109P/Swift — Tuttle) в 1862 г. Наблюдатели отмечали появление яркого вторичного ядра. Позднее Бютнер [Buttner, 1918], исследовавший движение кометы 1853 III, отметил, что ошибка наблюдений уменьшается, если предположить, что наблюдения кометы имеют систематическое смещение относительно ядра в сторону Солнца. По его оценкам величина этого смещения была постоянна и равна 2000 км. В дальнейшем исследователи движения комет неоднократно обращались к этому предположению при обработке наблюдений комет. Так, Ситарский [Sitarski, 1984] показал, что с учетом смещения фотоцентра наблюдения комет 1960 II, Григга — Шьеллерупа (26P/Grigg — Skjellerup) и Кирнса — Кви (59P/Kearns — Kwee) представляются лучше, чем без его учета. Йоманс и Шодас [Yeomans and Chodas, 1989], исследуя движение кометы Галлея на интервале трех и четырех появлений кометы, нашли, что величина смещения фотоцентра кометы равна 880 км, при этом они предполагали, что величина смещения изменяется обратно пропорционально квадрату гелиоцентрического расстояния. В работе [Medvedev, 1993] для объяснения явления смещения фотоцентра кометы относительно центра инерции ядра была предложена гипотеза о существовании в голове кометы точки относительного равновесия, в которой накапливается пыль, выносимая с поверхности кометы газом. Показано, что такая точка существует, расположена на линии комета — Солнце и асимптотически устойчива для движений вдоль линии комета — Солнце. Получена простая формула, позволяющая вычислять величину расстояния от этой точки до ядра кометы в зависимости от газопроизводительности и гелиоцентрического расстояния кометы.

Еще одним из эффектов сублимации вещества с поверхности ядра кометы является уменьшение массы и изменение формы кометного ядра. По исследованиям, проведенным в ходе последнего прохождения кометы Галлея через перигелий, эта комета теряет 0,1–0,2 % своей массы за один оборот вокруг Солнца. Учитывая, что средний радиус ядра кометы Галлея составляет 5 км, получаем, что со всей его поверхности в результате сублимации

уносится слой толщиной примерно 2,5 м за одно появление кометы, а для комет группы Крейца (см. раздел 4.6) эта величина достигает 20 м. Поэтому время жизни комет на короткопериодической орбите (с периодом обращения меньше 200 лет) ограничено.

Наиболее вероятны три сценария эволюции формы кометного ядра в зависимости от его состава.

1. Ядро кометы ледяное с относительно небольшой долей твердых примесей, не влияющих на сублимацию кометного вещества (модель Уиппла). В этом случае возможно полное испарение кометного ядра. Такая возможность была рассмотрена в работе [Лебединец и др., 1983]. Авторы считали, что ядро имеет сферическую форму и вследствие быстрого вращения вокруг своей оси сохраняет форму вплоть до полного испарения. Кроме этого, в работе указывается на возможность образования астероида группы Аполлона при наличии внутри кометы осколка скальной породы.

2. Ядро кометы — конгломерат льдов и нелетучей составляющей силикатной и углеродной природы. При испарении летучих веществ часть вещества остается в виде пылевой матрицы на поверхности, ослабляя со временем газопроизводительность кометы. Со временем на поверхности ядра кометы образуется мощная пылевая корка, препятствующая испарению вещества.

В работе [Rickman, 1987] рассмотрена эволюция кометного ядра с учетом пылевой составляющей. Рассматривались два варианта физической эволюции кометного ядра:

а) полная дезинтеграция и образование метеорного потока на орбите кометы;

б) образование астероидоподобного небесного тела с орбитой, похожей на

орбиты астероидов группы Аполлона. При этом, по мнению автора, форма кометного ядра не претерпевает заметных изменений и близка к сферической.

3. Кроме того, необходимо упомянуть случаи, когда ядро кометы состоит из нескольких крупных ледяных фрагментов, смерзшихся в единое тело (модель «конгломерат льдов») или нескольких каменных глыб, «cклееных» льдом. В момент сближения такого ядра с Солнцем в результате нагрева ядра солнечным излучением часть осколков может терять механический контакт и образовывать компактный метеорный поток. Форма кометного ядра при такой эволюции полностью определяется расположением этих осколков в теле кометы.

Наши знания о форме кометных ядер (до исследования кометы Галлея с близкого расстояния) были чрезвычайно скудны, наземные наблюдения не давали однозначного ответа. Только после того, как впервые комета Галлея была сфотографирована с близкого расстояния, были получены достоверные сведения о форме ее ядра. Оказалось, что это ядро имеет вытянутую форму. Вскоре появилась работа Джуита и Мич [Jewitt and Meech, 1988], в которой утверждалось, что вытянутая форма ядра кометы скорее правило, чем исключение. В указанной работе приводятся результаты фотометрических наблюдений ряда комет и астероидов, проведенных с использованием ПЗС-матриц, и на основании этих наблюдений проведено сравнение физических характеристик этих объектов. Сделан вывод о том, что ядра комет в среднем имеют более вытянутую форму, чем астероиды. На рис. 4.10 приведены фотографии ядер комет Галлея и Борелли (19P/Borrelly), полученные с борта космического аппарата (КА), подтверждающие предположение о вытянутой форме кометных ядер.

Рис. 4.10. а) Ядро кометы Галлея (16x8x8 км); б) ядро кометы Борелли (максимальный размер составляет ~ 8 км)

В работе [Medvedev, 1993] показано, что удлиненные кометные ядра являются естественным продуктом динамической эволюции фигуры и вращения ядра в условиях сублимации.

Здесь следует отметить, что наши знания о кометах постоянно пополняются и уточняются. Наиболее продуктивной формой исследования комет являются космические миссии к их ядрам. Кроме уже упомянутой космической миссии к комете Галлея, в последние десятилетия были проведены и проводятся несколько космических экспедиций к кометам.

Поделиться:
Популярные книги

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

Мой любимый (не) медведь

Юнина Наталья
Любовные романы:
современные любовные романы
7.90
рейтинг книги
Мой любимый (не) медведь

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Наизнанку

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Наизнанку

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая