Чтение онлайн

на главную - закладки

Жанры

Астероидно-кометная опасность: вчера, сегодня, завтра
Шрифт:

Для вертикального падения ( = 90°) ледяного тела (b = 1 г/см3) получаем Rb > 4 м.

Таким образом, если бы тела не разрушались, то относительно небольшие метеороиды достигали бы поверхности Земли со скоростью, близкой к начальной. Но космические тела разрушаются в полете под действием аэродинамических сил: они могут распадаться на фрагменты, изменять свою форму и площадь поперечного сечения [Мелош, 1994; Melosh, 1981; Passey and Melosh, 1980].

Анализ наземных и спутниковых наблюдений за входом в атмосферу метеороидов с характерными размерами порядка 1–3 м показывает, что они разрушаются на высотах 25–45 км, не достигая Земли [Chyba et al., 1993; Svetsov et al., 1995; Nemtchinov et al., 1997a]. С увеличением размера тела его прочность снижается, так как в большом теле больше дефектов, а также трещин, возникновение которых связано с предыдущими столкновениями в космическом пространстве. К тому же, для того чтобы разделить тело на части, необходима энергия, пропорциональная его площади,

в то время как запасенная в теле упругая энергия, связанная с аэродинамической нагрузкой, пропорциональна объему. Поэтому можно ожидать, что более крупные тела (> 10 м) начинают разрушаться на еще больших высотах. Следует также отметить, что абляция, вызванная теплопроводностью и переносом излучения в ударно-сжатом воздухе, незначительна для тел c размерами больше 10 м [Немчинов, Цикулин,1963; Немчинов и др., 1976; Baldwin and Sheafler, 1971; Biberman et al., 1980].

Деформация тела, вызванная аэродинамическими силами. Сильно фрагментированный объект может быть легко деформирован и становится подобным жидкости [Григорян, 1979]. При аналитических оценках используется предположение, что под действием аэродинамических сил во время полета оно расплющивается — увеличивается отношение его диаметра к высоте [Melosh, 1981; Ivanov et al., 1986; Chyba et al., 1993] — тело превращается в «блин» (pan-cake). Степень расплющивания может быть оценена из простых соображений. Давление на лобовой поверхности тела максимально в его критической точке и уменьшается к боковым поверхностям. Наличие градиента давления вызывает движение жидких частиц (или квазижидких частиц разрушенного материала) вдоль лобовой поверхности в радиальном направлении. Скорость этого поперечного движения Vt может быть оценена из следующего выражения [Григорян, 1979; Hills and Goda, 1993]:

Vt = (а/b)1/2V,

где V — скорость тела, b — его плотность, а — плотность атмосферы. Если плотность атмосферы убывает с высотой по экспоненциальному закону, то легко получить выражение, определяющее критический радиус R*b, когда тело расширяется до радиуса, примерно равного его начальному диаметру:

Если Rb < R*b, то может произойти деформация тела или его разрыв на отдельные части с последующим рассеянием частей фрагментированного тела. Критический диаметр для метеороидов в атмосфере Земли составляет 580, 330 и 200 м для ледяного, каменного и железного тел соответственно [Мелош, 1994].

Фрагментация и разрушение метеороида в атмосфере. Большие метеороиды (> 1 км) ударяются о поверхность Земли, почти не успев изменить форму и массу после прохождения через атмосферу. Судьба мелких тел зависит от их характеристик — состава, скорости, прочности, формы. Атмосфера оказывает большое влияние на последствия их ударов. Отсутствие кратера после падения Тунгусского космического тела диаметром 50–100 м показывает, что атмосфера может предотвратить образование кратера и ослабить сейсмические эффекты. Но железные тела того же размера достигают поверхности Земли. Так, известный 1-километровый кратер в Аризоне, возникший 50 000 лет назад, был образован падением железного тела диаметром 30–40 м [Мелош, 1994; Melosh and Collins, 2005]. На Земле было найдено довольно много кратеров меньших размеров, например 100-метровый кратер Kaaли в Эстонии возрастом приблизительно 4000 лет [Пиррус, Тиурма, 1987]. Еще несколько подобных кратеров в Эстонии возрастом в несколько тысяч лет имеют диаметры 40, 30 м и менее. Сихотэ-Алинский железный метеоритный дождь 1947 г. создал массу мелких кратеров (диаметр наибольшего из них около 26,5 м) и огромное число мелких фрагментов [Кринов, 1981; Кринов, Фонтон, 1959; Немчинов, Попова, 1997]. Начальная кинетическая энергия этого метеороида по оценкам составила около 10 кт тринитротолуола (ТНТ), масса — около 200 т. Поверхности достигли крупные фрагменты с энергией, соответствующей примерно 100 т ТНТ. Остальная энергия перешла в энергию нагретого воздуха и продуктов абляции. Хотя железные тела составляют только 6–7 % от всех падающих на Землю тел [Shoemaker, 1983], они легче проходят сквозь атмосферу и чаще встречаются в качестве находок.

Численное моделирование деформации и фрагментации метеороида. Действие аэродинамических сил — основная причина деформации и разрушения тел, попадающих в атмосферу. Применение модели «блина» ограничивается некоторой величиной fp отношения радиуса «блина» R к начальному радиусу тела Rb. Величина фактора расширения fp в разных работах принимается равной 2–7 в зависимости от некоторых дополнительных соображений, иногда не вполне корректных. Влияние этого фактора на параметры разрушенного тела (т. е. роя фрагментов и пара) на поздней стадии торможения, очевидно, очень велико, так как он определяет диаметр поперечного сечения, а

с ним и скорость тела (струи), и температуру воздуха в ударной волне, и т. д. Таким образом, простые модели могут дать весьма грубые результаты. Более точные предсказания должны основываться на более сложном прямом численном моделировании падения.

Прямые численные расчеты двумерной гидродинамической задачи падения тела в атмосфере были выполнены, например, в работе [Hazins and Svetsov, 1993] с использованием лагранжева метода и в работе [Teterev et al., 1993] эйлеровым методом со специальным способом маркировки границы тела. Ледяное космическое тело, движущееся сквозь атмосферу, рассматривалось как жидкость с уравнением состояния воды. Расчеты показали, что метеороид в определенных ситуациях расплющивается незначительно. Он постепенно теряет свою массу вследствие сдува вещества поверхности воздухом. Под действием неустойчивостей раздробленное тело может принимать различную форму, которую заранее невозможно точно предсказать. В некоторых случаях тело стремится принять коническую форму и легче выдерживает полет сквозь атмосферу. В других случаях оно раздувается и принимает форму тора. При скорости входа в атмосферу 20 км/с 200-метровое ледяное тело теряет перед падением на поверхность менее 20 % своей начальной кинетической энергии, но увеличивает свой радиус приблизительно до 300 м на высоте 6,5 км над поверхностью Земли. На еще более низких высотах тело разрушается на мелкие фрагменты, которые на момент падения рассеиваются на расстояния вплоть до 200 м от центра падения метеороида. Масса этих фрагментов составляет 80 % от начальной массы, и их энергия достигает более чем 70 % от начальной энергии метеороида. Несмотря на разрушение тела, единая ударная волна охватывает все фрагменты. Подобные численные расчеты были проведены и для большего тела с диаметром 400 м. В этом случае тело деформируется, и при достижении поверхности Земли его полная масса уменьшается лишь на 10 %.

В работе [Teterev and Nemtchinov, 1993] была развита численная модель «мешка с песком», в которой считалось, что метеороид представляет собой совокупность частиц, движущихся сквозь атмосферу. Частицы передают энергию и импульс атмосфере и охватываются единой огибающей их ударной волной. С помощью этого метода также было показано, что сильно фрагментированный метеороид принимает коническую форму (рис. 8.1) и теряет меньше энергии, чем это было предсказано с помощью простых полуаналитических моделей дезинтеграции.

Рис. 8.1. Положения характерных частиц в модели «мешка с песком» для двух моментов полета t. Предполагается, что метеороид был мгновенно фрагментирован на высоте 25 км на 106 каменных фрагментов, заполняющих сферу с диаметром 200 м, и имел скорость 20 км/с

В расчетах предполагалось, что каменный метеороид после начальной стадии фрагментации состоит из 106 каменных фрагментов, свободно упакованных в сфере диаметром 200 м, скорость их составляет величину 20 км/c. В расчетах использовались пять групп фрагментов с радиусами от 10 см до 10 м, средний радиус составлял 1 м. Перед падением диаметр сферы, содержащей основную часть каменных фрагментов, увеличивался приблизительно до 400 м. Вследствие увеличения объема тела перед падением и уменьшения его средней плотности механический импульс, передаваемый поверхности Земли, будет меньше, чем для более компактного тела, и большая часть кинетической энергии тела будет превращаться в энергию поднимающегося факела.

След за телом. Космическое тело, проходящее сквозь атмосферу, создает за собой нагретый след, который расширяется до тех пор, пока давление в нем не сравняется с атмосферным. При расширении плотность в следе понижается. Воспользуемся очень простой идеализированной моделью цилиндрического сильного взрыва: тонкий ударно-сжатый слой с выровненным давлением внутри этой оболочки. Будем считать, что разреженная полость за фронтом расширяется до момента времени, когда давление на фронте становится примерно равным атмосферному давлению pа. Отсюда получаем, что радиус следа Rw определяется соотношением

Rw Rb(p0/pа)1/2, или Rw Rb(V/Ca) ,

где p0 — давление на лобовой поверхности затупленного тела (p0 аV 2, a — плотность воздуха, — показатель адиабаты), Cа — скорость звука в холодном воздухе. При V = 15 км/с, Cа = 0,3 км/с получаем Rw/Rb 60. Таким образом, для тела диаметром 0,2 км диаметр следа будет достигать Rw 12 км. В действительности, за время пролета тела сквозь слой толщиной порядка характеристической высоты атмосферы H след не успевает расшириться до своего предельного размера.

Поделиться:
Популярные книги

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Ливонская партия

Ланцов Михаил Алексеевич
3. Иван Московский
Фантастика:
альтернативная история
5.00
рейтинг книги
Ливонская партия

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

В теле пацана 4

Павлов Игорь Васильевич
4. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 4