Автономное электроснабжение частного дома своими руками
Шрифт:
1.4.1. Все о модулях солнечных батарей
Прототипом современных солнечных элементов являют фотоумножители (ФЭУ).
Процесс преобразования световой (photons) энергии в электрическую (voltage) называется «PV-эффект». Он был открыт в 1954 году, когда ученые обнаружили, что кремний (этот элемент – основа обыкновенного песка) создает электрическую энергию, когда его освещают солнечным светом. Вскоре солнечные элементы стали применять для питания электронной аппаратуры космических спутников и небольших электронных устройств таких, как
Когда аккумулятор для зарядки подсоединяется к солнечной панели, обычно в цепь необходимо включать контроллер для предупреждения перезаряда. Эта схема использует параллельный способ подключения: солнечная панель всегда подключена к аккумулятору через последовательно включенный в электрической цепи диод.
Когда солнечная панель заряжает аккумулятор до желаемого максимального напряжения, схема параллельно солнечной панели подключает нагрузочный резистор, чтобы поглощать избыточную мощность с солнечной панели.
Функция полезной мощности, отдаваемой солнечной батареей в нагрузку, зависит от вырабатываемого напряжения, которое в свою очередь зависит от инсоляции – то есть от интенсивности солнечного света – и температуры самой батареи.
Работа на кривой зависимости ток/напряжение где-либо еще кроме точки максимальной получаемой мощности, приводит к снижению эффективности работы и потере доступной энергии.
Следовательно, контроль точки максимальной мощности является необходимой функцией в передовых системах управления источниками солнечной энергии, так как это может увеличить практическую эффективность часто на 30 % и более.
Системы, получающие энергию от возобновляемых источников, таких как солнечные батареи или ветровые генераторы, обычно накапливают энергию в аккумуляторах, а затем отдают ее в нагрузку; нередко оба эти процесса происходят независимо.
Модули солнечных батарей конструктивно реализуются в виде монолитного ламината спаянных монокристаллических элементов.
«Каркасная» солнечная батарея конструктивно выполнена в виде панели, заключенной в каркас из алюминиевого профиля. Панель представляет собой фотоэлектрический генератор, состоящий из стеклянной плиты ламинированными на ней элементами.
К внутренней стороне корпуса модуля прикреплен диодный блок, под крышкой которого размещены электрические контакты, предназначенные для подключения модуля.
Беcкаркасные модули представляют собой ламинат, выполненный на алюминии, стеклотекстолите, а также – без всякой подложки.
Солнечные элементы расположены между двумя слоями ламинирующей пленки ЭВА (этил-винил-ацетат). Лицевая сторона защищена оптически прозрачной пленкой типа ПЭТ (полиэтилентерефталат), а тыльная – либо подложкой (стеклотекстолит, алюминий), либо той же пленкой ПЭТ без дополнительных требований к оптическим характеристикам.
Солнечные батареи сохраняют работоспособность в условиях:
• температур в диапазоне -50 +75o С;
• атмосферного давления 84-106,7 кПа;
• относительной влажности до 100 %;
• дождя интенсивностью 5мм/мин;
• снеговой или гололедно-ветровой нагрузки до 2000 П
Солнечная батарея являет собой, прежде всего, законченный фотоэлектрический преобразователь, который был рассмотрен выше, его технические характеристики справедливы как для отдельных элементов, так и для солнечных батарей.
1.4.2. Принципы применения солнечных батарей
Сегодня можно самостоятельно собрать устройство для обеспечения электропитания посредством солнечной энергии, специально преобразованной в электрический ток и накопленной с помощью электронных устройств и аккумуляторов. Такие электронные устройства состоят непосредственно из солнечной батареи (солнечных элементов, соединенных в батарею), аккумулятора, преобразователя (инвертора) тока (из постоянного – в переменный). Таким образом, иметь дома источник альтернативного питания с сетевым напряжением 220 В вполне доступно.
На рис. 1.10 представлена блок-схема устройства источника питания от солнечной батареи.
Рис. 1.10. Блок-схема устройства источника питания от солнечной батареи
Согласно представленной иллюстрации полезная мощность (и ее смысл для потребителя) зависит от мощности каждого элемента устройства. Здесь уместно вспомнить старую, но верную поговорку: «скорость эскадры определяет самый тихоходный корабль».
И, соответственно, при разработке проекта обеспечения дома альтернативной энергией, учитывать технические и электрические характеристики каждого и слагаемых.
Давайте рассмотрим этот тезис на простом примере. Для обеспечения работы одного современного электрочайника требуется запас мощности около 2 кВт, то есть не менее 11 батарей типа ТСМ-180-12 (с запасом).
Солнечные батареи мощностью 1 кВт, сегодня имеет розничную цену порядка 180 000 руб. Для сравнения дизельному электрогенератору для выработки 1 кВт/час электроэнергии потребуется до 0,33 литров дизельного топлива. При стоимости топлива 32 руб./литр затраты на топливо составят примерно 10 руб. за 1 кВт/час. Приобрести такой генератор с размером, сопоставимым с двумя-тремя системными блоками ПК, можно за 15 000 руб. Выводы делайте сами.
Ценообразующим фактором солнечной батареи (и ее отдельных элементов) является полезная мощность (напряжение и выходной ток).
К примеру, сегодня стоимость готовой солнечной батареи типа ТСМ-180-12 (производится в России) с номинальным напряжением 12 В и полезной мощностью 180 Вт сегодня составит порядка 15 тыс. рублей (для сравнения 2011 год – 30 000 рублей).
Устройство ТСМ-180-12 представляет собой монокристаллический солнечный фотоэлектрический модуль (панель) максимальной мощностью 180 Вт ±5 %, разработанный специально для систем автономного и резервного электроснабжения частных домов. Для примера – в летний ясный день один лишь модуль ТСМ-180-12 способен выработать до 1080 Вт/часов электроэнергии.