Бегство от удивлений
Шрифт:
Построение исполнено точно по правилам Минковского. Следуя им, координатную плоскость лодки пришлось наклонить так, чтобы углы между нею и световым конусом всюду были равны углам между световым конусом и осью времени лодки. Этой оси на чертеже нет. Нарисуйте ее самостоятельно.
Не забывайте, что верх этой картинки — отнюдь не небо. Небу не нашлось места. Вверх идут оси времени, или мировые линии (на диаграмме есть только ось времени берега).
Разберитесь в чертеже. И попробуйте провести проекции секунд и метров берега, лодки, течения. Это любопытно и поучительно.
Занятие, правда, не из простых — больше подходит для десятиклассников. А впрочем,
Чаще всего физические тела движутся в пространстве в трех взаимно перпендикулярных измерениях (и в длину, и в ширину, и в высоту). Строго говоря, только такие движения и существуют. Самолет облетает гору — и поднимается, и сворачивает; автомобиль делает вираж и прыгает по ухабам; Луна кружит вокруг Земли и вокруг Солнца сразу. Конечно, старое условие остается в силе: мы обсуждаем пока только равномерные и прямолинейные движения. Но и для них наиболее общи объемные системы отсчета.
Поэтому реальная диаграмма Минковского должна иметь в каждой системе не одну и не две пространственные оси, а три — длину, ширину и высоту. И к ним добавится еще ось времени.
Надо, чтобы три пространственные оси расположились под прямыми углами друг к другу (как ребра аквариума). И чтобы ось времени тоже была к ним перпендикулярна— сразу ко всем трем. Этим условиям должен удовлетворять полный — уже без всяких упрощений — мир Минковского.
Увы, как ни старайтесь, такой четырехмерной диаграммы вы не построите. Ни на листе бумаги, ни в объемной модели. Потому что пространство, в котором мы живем, всего лишь трехмерно. Четвертое измерение (время) некуда будет девать: его никак не поставишь перпендикулярно к трем остальным.
Но то, что нельзя построить, можно попробовать вообразить.
Знатоки геометрии умеют, не строя четырехмерных фигур, чертить их проекции на трехмерное пространство или плоскость. [11] Получаются соответственно объемные тела и плоские фигуры. Примерно так же на плоскость (скажем, стену комнаты) или на линию (натянутую нить) падают тени (проекции) объемных трехмерных тел — людей, чайников, стульев и т. д.
Короче говоря, несмотря на то, что уменьшенную копию четырехмерного мира Минковского нельзя нарисовать на бумаге или вылепить из глины, оперировать с ним можно. И составлять с его помощью сложные «расписания» множества сверхбыстрых движений. В расписаниях нас интересуют времена и расстояния, а они как раз и складываются из «теней» — из проекций пространственно-временных интервалов на оси, плоскости, объемы систем отсчета.
11
Это умение не требует особой одаренности, его уже начали прививать ученикам некоторых наших физико-математических школ; нужно развить пространственное воображение и накопить навык.
Так мы добрались до удивительного вообще-то вывода: мир четырехмерен. При жизни Минковского, в годы молодости Эйнштейна это было воспринято кое-кем чуть ли не как божественное откровение.
Тогда, в начале века, широкая публика начала понемножку интересоваться успехами математики, и вошли в моду салонные беседы о многомерных пространствах. Невообразимые, неощутимые, они казались обиталищем таинственных миров-невидимок, которые пронизывают и обнимают нашу скромную трехмерную Вселенную. Многие склонны были видеть в четырехмерности не математическую абстракцию, а нечто потустороннее, мистическое. И, конечно же, по инерции перенесли такое отношение на мир Минковского. А стало быть, и на теорию Эйнштейна.
Однажды некая знатная дама после популярной лекции Эйнштейна восхищенно поблагодарила его за «подтверждение сверхъестественной четырехмерности». Эйнштейн расхохотался. Дама ровным счетом ничего не поняла. Найти мистику в четырехмерной пространственно-временной диаграмме можно с таким же успехом, как в таблице футбольных игр.
Мир Минковского — это только сочетание графиков, геометрическая иллюстрация физического единства пространства и времени. Каждое событие фиксируется в любой системе отсчета не тремя, а четырьмя величинами—тремя координатами пространства и одной времени.
Вот и вся премудрость.
Этот новый мир — мир-диаграмма. Взгляд сразу на обе составные части системы отсчета — и на пространство и на время. Очень удобный ракурс для физического «зрения».
Но только пользоваться им надо с оглядкой. И помнить одну очень существенную черту четырехмерного мира: одна из осей во всех его системах отсчета — ось времени — неравноправна с тремя остальными. В пространстве можно лететь куда угодно, во времени — только вперед.
Забыв об этом, легко попасть впросак.
Как это бывает, сейчас увидим.
Глава 14. В ПРОШЛОЕ ПУТЬ ЗАКРЫТ
Как ни печально, но я должен сообщить вам пренеприятное известие. Пока мы чертили графики, межзвездный пират Клио бежал из-под ареста. Это случилось ночью. Часовой увлекся детективным романом и не заметил, как заключенный робот (на следствии было установлено, что Клио — действительно робот, причем очень поверхностно обученный) расплавил своим огненным дыханием стальную решетку и вылез из окна милиции.
Было тихо. Звезды стояли в вышине. В траве стрекотали кузнечики. Клио на цыпочках выбрался на улицу. Последним трамваем приехал на окраину городка. Добрался лесными тропами до своего звездолета «Медуза», спрятанного в кустах.
В голове Клио бродили туманные мысли. Роботу было досадно, что так нелепо сложилась его жизнь. Хотелось изменить темное прошлое, начать жизнь сначала. «Бежать, немедленно бежать... Но куда? Куда? О, если бы мне удалось вернуться хоть на год назад! — мечтал космический бандит.— Тогда я не стал бы снова на преступный путь... Я начал бы заниматься спортом, пошел бы учиться в вечернюю школу взрослых, из разрушителя я превратился бы в созидателя...»
Тут Клио сверкнул глазами и хлопнул себя по лбу. «Ба! — воскликнул он.— А ведь я еще в силах исправить свое печальное положение...» Отрывочные сведения по теории относительности забродили в его отчаянной кристаллической голове и наконец вылились в логическую цепочку, которая показалась пирату безошибочной.
«Моя задача, — торопливо соображал робот-разбойник, — заключается в том, чтобы вернуться в прошлое, года на два назад. Тогда я, само собой разумеется, начну новую жизнь, мирную и честную. Из теории Эйнштейна вытекает, что для путешествия в прошлое нужно совсем немного — просто полетать некоторое время со скоростью большей, чем скорость света. Недаром эта идея увековечена в стихах: