Беркли за 90 минут
Шрифт:
Похоже, тот факт, что он использовал математику для того, чтобы доказать саму ее ложность, его абсолютно не беспокоил.
Несмотря на такую, казалось бы, абсурдность, доказательства, используемые Беркли, представляют для философии большую важность. И правда, его работа была встречена историком математики Флорианом Каджори, как «самое значительное событие столетия в истории британских математиков». Так как XVIII столетие стало веком математики Ньютона, непонятно, почему Каджори считал, что Беркли преуспел в своем опровер жении. Сделать такие огромные успехи в математике,
Основная критика математики, против которой ополчился Беркли, строится на определении бесконечности. В математике линия, обладающая ограниченной длиной, может быть поделена на бесконечное множество бесконечно малых отрезков (интегральное исчисление, которое незадолго перед этим, было открыто Ньютоном и Лейбницем, строится на этом принципе). Беркли утверждал, что сама идея бесконечно делимой линии конечной длины противоречит сама себе. Деление линии должно продолжаться бесконечно (так как она состоит из бесконечного числа отрезков), и в то же время оно должно подойти к концу (так как линия имеет ограниченную длину). И то, и другое одновременно происходить не может.
Подобным способом Беркли пытался доказать, что если линия, имеющая определенную длину, состоит из бесконечных маленьких отрезков, эти отрезки на определенном этапе должны обрести определенную длину. В какой момент эти бесконечно маленькие отрезки «вырастут» в отрезки фиксированной длины? Как только они приобретут определенную длину, несмотря на бесконечно малую длину отдельного отрезка, он также может быть поделен на бесконечное число частей. Так когда же они становятся более неделимыми, если все вместе составляют целую линию определенной длины? Но что, если линия будет чуть короче? Такие вопросы можно задавать до бесконечности…
Ответ Беркли одновременно прост и логичен.
Нет такого понятия, как бесконечная делимость.
Поэтому, в соответствии с законами логики, делимость обладает конечностью. Это означает, что в итоге мы придем к отдельным «частицам» длины.
Беркли осознавал, что такое рассуждение может привести к странным выводам. Например, геометрический метод Евклида деления отрезка на две равные части в этом случае не работал.
Почему? Деление было невозможно, если линия состояла из нечетного числа отрезков.
Доводы, которые приводил Беркли, опровергая математику, на самом деле были неопровер жимы. Он «опроверг» математику своим способом.
Будучи в некоторой степени математиком, он был готов признать, что эта наука, безусловно,
«работает». Но ведь он с такой же безусловностью только что доказал свою точку зрения: математика основывается на тайнах, которые так же непостижимы, как и религия. Такое «опровержение » математики Беркли оставалось без ответа целое столетие. До момента, пока не была открыта неевклидова геометрия, в которой математическое пространство противопоставляется реальному.
Бесконечная делимость возможна в математическом пространстве, в то время как в реальности такое невозможно.
Как мы уже видели, Беркли также критиковал науку чисто философскими методами в своей книге «О движении». Эта книга также опережала свое время и в равной степени состояла из его собственной ненаучной философии. Теория Ньютона о земной гравитации включала понятия абсолютного движения и абсолютного пространства.
Другими словами, количество пространства, такое, например, как определенная длина, могло быть измерено по абсолютной неизменяемой шкале. То же самое применялось и к количеству времени. Обе сущности совершенно явно были зафиксированы!
Беркли заявил, что такого понятия, как абсолютное движение, не существует: оно всегда должно быть относительным и также должно включать физические величины. Движение - это то, как мир воспринимается «Творцом Природы».
В подобных доказательствах Беркли частенько использовал это сочетание слов для определения Бога. Если приравнять «Творца Природы» и «законы природы», для современного восприятия это будет гораздо более понятно и приятно. Но сам Беркли ни за что не согласился бы, что эти два понятия тождественны.
Итак, движение не было абсолютным, его нельзя было отделить от мира. То же самое и с абсолютным пространством. Это была чистая абстрактная идея, которую, в отличие от так называемой абстрактной идеи яблока, мы не можем описать в подробностях. Насколько велико это абсолютное пространство? Как оно выглядит?
Как мы вообще можем воспринимать его? Пространство также было относительным и, одновре менно, частью мира - это также было способом, с помощью которого «Творец Природы» воспринимает мир. На идеи Беркли о таких материях ученые не обращали внимания до начала XX века.
Теория относительности Эйнштейна рассматривает пространство и движение во многом так, как их воспринимал Беркли, хотя и без его рассуждений о духовности.
После бесконечно долгих часов ничегонеделанья при королевском дворе Беркли в конце концов оказали честь и назначили епископом Клойна, епархии, которая расположена на юго-западе Ирландии. Исторически она была основана в шестом веке св. Колманом, который в раздражении ушел из лона Церкви, поскольку полагал, что все они неправильно вычислили день, в который должна праздноваться Пасха. Теперь в Клойне опять появился епископ, который полагал, что остальной мир живет не по правилам.
Беркли со своей семьей (в которой теперь было несколько детей) отправился через море в Дублин, а затем проделал долгий путь на юго-запад вдоль гор Нокмилдаун, в отдаленный горо док Клойн. Здесь Беркли проживет следующие восемнадцать лет (1734-1752) в доме епископа. (Дом, в котором он жил, сгорел в 1870 году, но, говорят, что современный большой дом епископа очень похож на сгоревший.) Его шестеро детей подрастали, жена заведовала хозяйством на ферме (на которой трудилось более ста рабочих), семья стала как центром местной общественной жизни, так и центром благотворительности в голодные зимы в неурожайные годы.