Чтение онлайн

на главную

Жанры

Беседы о рентгеновских лучах
Шрифт:

речь ведь не о звездах сцены или спорта, которые порой бывают абсолютно неуправляемыми, а о настоящих небесных созданиях, подобных нашему дневному светилу.

Вот картина, нарисованная воображением не писателя-фантаста, а ученого-астрофизика. Почему бы не представить, что когда-то удастся (а может, уже и удалось какой-нибудь внеземной цивилизации) контролировать течение ядерных реакций в звездах? Естественно, не потехи ради, а с тем, чтобы противопоставить слепой стихии дальновидный разум. Предупреждать, например, самовольные вспышки и угасание солнц, лучше удовлетворять энергетические потребности человечества.

Так рассуждает профессор И. Шкловский.

Физическая основа этой его действительно фантастической идеи - гипотетическая пока возможность создать сверхлазер, работающий на волне длиной около 10^-10 сантиметра, что соответствует одновременно рентгеновскому и гамма-диапазону. (Здесь как раз тот участок спектра, где они перекрывают друг друга на стыке.)

Если на Земле такой луч будет иметь поперечник в 10 метров, то на расстоянии в 10 световых лет - всего лишь 10 километров. При столь малой расходимости поток радиации сохранит такую плотность, концентрированность энергии, что проникнет в глубь термоядерной топки звезды и сможет, если надо, стимулировать горение.

Хорошенькое дело: шуровать этак в небесной "печке" сверхдлинной рентгеновской или гамма-"кочергой"!

Ну а если не замахиваться на столь грандиозную затею, которая скептикам наверняка покажется прожектерской? Идея остается заманчивой и при гораздо меньших масштабах ее реализации.

Когда (если, конечно) появятся термоядерные электростанции, их, как уже говорилось, будет целесообразно размещать в космосе. Не только потому, что там в готовом виде есть сверхглубокий вакуум, необходимое условие их работы. Дело еще и в другом: нужно предотвратить перегревание земной поверхности, чреватое катастрофическими последствиями. Энергию оттуда придется передавать по необычному "прямому проводу" - лучу, как бы с помощью электромагнитной рапиры, пронзающей атмосферу. При этом 4/з тепловых отходов останутся за пределами воздушного щита.

Рукотворные солнца, зажженные в межпланетном пространстве, тоже потребуют регулировки. Ясно, что они окажутся источниками мощной рентгеновской радиации, которая будет уносить тепло из их недр. А там должна поддерживаться температура в сотни миллионов градусов, не опускаясь ниже определенного критического уровня. Кто знает, может, и здесь понадобится лазерная "кочерга", чтобы мгновенно вводить ее в глубь топки и подогревать в нужных местах хрупкое облако плазмы.

А если не понадобится, она пригодится в других случаях на Земле. Для того, например, чтобы влиять на технологические процессы в обычном реакторе - химическом, не термоядерном. Могут возразить: но и так уже сегодня на них воздействуют рентгеновскими лучами! Притом успешно: стимулируют полимеризацию, крекинг и другие важные превращения веществ. Нужны ли здесь квантовые генераторы этой радиации?

Подобный скептицизм вроде бы небезоснователен:

подобных генераторов пока нет, и неизвестно, изобретут ли их вообще. Однако такой же точно была ситуация с обычными лазерами незадолго до того, как они стали реальностью не только теории, но и практики за несколько лет - с 1956 по 1961 год. А ныне прочно вошли в наш обиход.

Создать такие приборы, работающие в рентгеновском диапазоне, не менее заманчиво. Но конечно, и не менее сложно. Какими, например, должны быть для них резонаторы? В обычном лазере это обычные зеркала, расположенные лицом к лицу, параллельно друг другу. Многократно отражаясь от них и умножаясь лавинообразно, кванты света все больше пополняют и уплотняют свои ряды, пока не увеличат ударную мощь настолько, чтобы

вырваться наружу через полупрозрачный экран. Но рентгеновскую радиацию недаром называют всепроникающей: она пройдет сквозь такие резонаторы, словно Алиса в Зазеркалье...

Тем не менее положение небезнадежно. Вспомним:

плоский камень, с силой брошенный по касательной к водной глади, отскакивает рикошетом, хотя потонул бы незамедлительно, если бы упал отвесно. Мы уже знаем, как действуют рентгеновские телескопы с зеркалами скользящего падения. Там достигается практически полное отражение от тщательно отполированной металлической поверхности. Тот же принцип используется и в рентгеновских микроскопах, дающих увеличение в 100 тысяч раз.

Есть и иные трудности, притом немалые. Недооценивать их нельзя, но и переоценивать тоже не стоит.

А вот другая перспектива - она уже становится реальностью. Можно взять обычный квантовый генератор и преобразовать его радиацию в ультрафиолетовую. Если делать ее все более жесткой, то вполне вероятно превратить и в рентгеновскую.

Лазерное излучение монохромно, как сказал бы художник, или монохроматично, как поправил бы физик. Согласимся и поспорим с обоими: оно действительно одноцветно (от "моно" - "единый" и "хрома" - "окраска"), но так или иначе это не вполне корректно, как заметил бы математик. Оно ведь может быть невидимым (скажем, инфракрасным).

Вот почему в таких случаях говорят: излучение характеризуется одной частотой. И опять-таки это не вполне точно. Ему на спектре соответствует не линия, а полоска, правда, сравнительно узкая. Примерно так же, как на шкале радиоприемника каждой станции отведен свой мини-диапазон пусть небольшой, но уловимой ширины.

Лишь после таких оговорок можно, наконец, сказать главное. В 1961 году выяснилось, что лазерное излучение способно удваивать свою частоту, проходя "через некоторые специально подобранные кристаллы".

Иными словами, вдвое укорачивать свою волну. Вскоре обнаружилось, что сократить ее длину можно и втрое и вчетверо...

Один из самых мощных лазеров - неодимовый.

Он работает на волне 1,06 10^-4 сантиметра. Если ее уменьшить вдвое (до 0,53 10^-4 сантиметра), незримая радиация (инфракрасная) превратится в видимую (зеленую). А если втрое (до 0,35 10^-4 сантиметра), - то в ультрафиолетовую.

Между тем возможно гораздо большее сокращение.

Скажем, в 9 раз. Тогда получится 0,12 10^-4 (или, что то же самое, 1,2-10^-5 сантиметра). А это уже у самой границы с рентгеновским диапазоном, который начинается с 10^-5 сантиметра.

Спрашивается: чем плохи обычные рентгеновские кванты, нужны ли еще и лазерные? При такой постановке вопроса придется ответить: рассматриваемые индивидуально, порознь, они ничем не отличаются друг от друга. Иное дело их поток в целом. Вместе взятые в такой компании они отличаются разительно.

Начнем с "одноцветности". Ее не обеспечивают рентгеновские трубки. Их "продукцию" приходится делать менее широкополосной с помощью специальных фильтров-монохроматоров, которые отсекают лишнее по краям, ограничивая остаток обычно пределами от 2-10^-8 до 6-10^-10 сантиметра. Можно сузить рамки, но это значит, что аппаратура, притом дорогостоящая, будет в еще большей степени работать на "отходы производства", изнашиваясь и потребляя электроэнергию высокого вольтажа Точь-в-точь как токарный станок, когда он снимает стружку в таком количестве, что от громадины-болванки остается фитюлька-заготовка.

Поделиться:
Популярные книги

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Отмороженный 7.0

Гарцевич Евгений Александрович
7. Отмороженный
Фантастика:
рпг
аниме
5.00
рейтинг книги
Отмороженный 7.0

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Пятое правило дворянина

Герда Александр
5. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пятое правило дворянина

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Безымянный раб [Другая редакция]

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
боевая фантастика
9.41
рейтинг книги
Безымянный раб [Другая редакция]

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач