Безумные идеи
Шрифт:
Кольцо вокруг тайны холода сужается. Теперь ученые наблюдают уже не случайные, непредвиденные явления. Они стараются получить результаты, предсказанные теорией сверхтекучести.
Часть из них продолжает двигаться по следу гелия.
Действительный член Академии наук Грузинской ССР Э.Л. Андроникашвили изучает свойства вращающегося гелия. Гелий остается верным себе. И вращается-то он не так, как все другие жидкости. Если очень закрутить его, он начинает вести себя уже не как жидкость, а как упругое тело. Отдельные слои становятся упругими жгутами, которые упираются и противятся
Член-корреспондент Академии наук СССР А.И. Шальников, чтобы изучить взаимодействие нормальной и сверхтекучей частей жидкого гелия, «подкрашивает» его электронами. По их движению он надеется проследить за отношением этих двух разных жидкостей.
Доктор физико-математических наук В.П. Пешков обнаружил «второй звук» в гелии, предсказанный теорией Ландау. Оказалось, что, кроме обычного звука, представляющего собой волны сжатия и разрежения, в сверхтекучем гелии возможны незатухающие тепловые волны, названные вторым звуком.
Что бы вы сказали, если бы обнаружили, что вода в чайнике никак не нагревается даже при сильном огне? Сам чайник уже раскален, а вода в нем еще холодная. Нечто подобное обнаружил П.Л. Капица еще в далекие дни первых опытов с гелием.
Объяснить это странное явление удалось лишь в наши дни ученику Ландау доктору физико-математических наук И.М. Халатникову. Оказывается, жидкий гелий нагревается вовсе не так, как вода в чайнике, — от соприкосновения с его стенками. Гелий нагревают те самые неслышимые звуковые волны, которые исходят от стенок сосуда при их нагревании. А процесс этот и не быстрый и не такой уж эффективный...
Так, шаг за шагом, ученые разоблачают тайны необычного характера гелия.
Много интересных явлений предсказали в области низких температур и экспериментально подтвердили московские физики: действительные члены Академии наук СССР В.Л. Гинзбург, И.Я. Померанчук, члены-корреспонденты Академии наук СССР Е.М. Лифшиц, А.А. Абрикосов и многие другие. Но и их работами далеко не исчерпываются исследования всех замечательных и многообразных явлений, связанных со сверхтекучестью гелия.
Ну, а куда привел ученых след девятнадцати металлов? Туда же, куда и след гелия. Причина сверхтекучести гелия и сверхпроводимости металлов оказалась общей.
Все, конечно, замечали, как вода просачивается сквозь песок. Так и электрический ток представляет собой движение электронов, просачивающихся между атомами металла. Электроны тормозятся атомами, которые сами находятся в тепловом движении и непрестанно колеблются. На эти столкновения и уходит энергия электронов, полученная ими от электрической батареи.
Атомы металла, получив дополнительную энергию, раскачиваются еще больше и еще сильнее мешают продвижению электрического тока. Таков механизм сопротивления металлов электрическому току. Это не было для ученых откровением — явление давно изучено. Но то, чему стали свидетелями ученые, охладившие металлы, было действительно откровением. Куда девается способность металлов сопротивляться электрическому току? Что в них происходит?
Если металл охладить, тепловые колебания атомов уменьшаются. Они меньше мешают электрическому току. А при очень низкой температуре почти совсем не мешают.
Но такое «замерзание» сопротивления не может привести к сверхпроводимости. Ведь тепловые колебания в соответствии с классической физикой убывают вместе с температурой и уменьшаются до нуля только при абсолютном нуле температуры. Квантовая физика показала, что даже при абсолютном нуле движения внутри вещества не прекращаются полностью — остаются так называемые нулевые колебания атомов и элементарных частиц.
Однако опыт показывает, что при постепенном охлаждении сверхпроводящих металлов их сопротивление сначала убывает вместе с уменьшением температуры (как предсказывает классическая физика), но при какой-то температуре, характерной для данного металла, сопротивление внезапно, скачком падает до нуля.
При этом происходит своеобразное явление, не имеющее прецедентов ни в одной другой области науки. Вблизи абсолютного нуля, когда тепловые колебания атомов крайне ослаблены, электроны начинают вести себя совсем по-особому. Их поведение кажется просто непостижимым.
Между ними возникают вдруг силы притяжения! Электроны, несмотря на то, что отрицательно заряженным телам полагается отталкиваться, начинают вдруг стремиться друг к другу!
Для ряда металлов это стремление оказывается настолько интенсивным, что оно пересиливает отталкивание между электронами. По мере охлаждения они все сильнее связываются между собой, объединяясь в дружный, слаженный коллектив. Это немного похоже на то, как отдельные бессильные капли воды превращаются однажды в мощную реку, сметающую на своем пути песок и камни, вырывающую с корнем кусты и деревья.
Так и отдельные электроны в металле вблизи абсолютного нуля сливаются в электронный поток, свободно текущий внутри металлов без всякого сопротивления с его стороны. Наступает состояние сверхпроводимости...
Это удивительное явление до сих пор поражает воображение ученых, до сих пор с трудом переводится на общедоступный язык образов и аналогий. Такое состояние электронов неустойчиво и капризно. Если металл снова нагреть, атомы начнут колебаться сильнее и снова разобьют сверхтекучую жидкость на отдельные беспомощные капли — электроны, которые в одиночку с трудом будут пробираться в металле, растрачивая при этом всю свою энергию...
Итак, странное поведение гелия и металлов при низких температурах имеет общие корни. Явления сверхтекучести и сверхпроводимости очень схожи по своему механизму и подчиняются одним и тем же квантовым законам. Так же как сверхтекучая жидкость при низких температурах без всякого трения проходит через самые узкие щели, так и электронная жидкость в металле — электрический ток — свободно, без трения просачивается через «щели» между атомами и молекулами.
Совсем недавно, в 1958 году, голландский физик X. Казимир с сожалением констатировал: «В настоящее время объяснение явления сверхпроводимости остается вызовом физику-теоретику».