Чтение онлайн

на главную

Жанры

Битва за скорость. Великая война авиамоторов
Шрифт:

Более того, буквально в это же время на Ближнем Востоке произошла «Шестидневная война» между Израилем и альянсом Египта и Сирии, показавшая неспособность ВВС этого альянса противостоять израильской (американской) авиации. Конечно, одним из факторов израильской победы была самонадеянность арабских генералов, открыто, как на параде, расположивших свои самолеты на аэродромах без всякого укрытия (капониры, подземные стоянки и т. п. отсутствовали) да еще в условиях минимального времени подлета с израильских баз. Конечно, факт, что израильские самолеты применяли специальные бомбы для вывода из строя бетонных взлетно-посадочных полос, прицельно сбрасываемые с малых высот. Конечно, французские «миражи», стоящие на вооружении ВВС Израиля, в целом были не хуже «мигов». Но выявились и неприятные системные вещи. Так, двигатели, установленные на советские самолеты, не имели автономных систем запуска. Их запуск производился от аэродромного энергоисточника. То есть для подготовки самолета к вылету необходимо было ждать, пока автомашина с энергоузлом подъедет к самолету.

Дорогое

время терялось, и самолеты оказывались уязвимыми на аэродромах.

С точки зрения повышения весовой отдачи самолета как боевой платформы это решение казалось оптимальным. Ведь функция наземного запуска нужна только на земле и поэтому может быть обеспечена наземными же средствами. Требуемая мощность постороннего источника для раскрутки ротора компрессора до 10–15 % числа оборотов от максимального значения, когда уже можно подавать топливо в камеру сгорания, составляет ни много ни мало, а 100–200 л.с. и соответственно имеет заметный вес. В воздухе раскрутка ротора до тех же 10 % осуществляется набегающим потоком воздуха (авторотация), и дополнительный источник мощности не нужен. На транспортных самолетах функция наземного запуска осуществляется с помощью вспомогательной силовой установки (ВСУ), т. е. небольшого газотурбинного двигателя, от компрессора которого отбирается сжатый воздух и подается по трубе к воздушной турбине, установленной на двигателе. Она через редуктор и раскручивает ротор компрессора. А на боевом самолете с автономным запуском обычно устанавливается не воздушный, а турбостартер, т. е. та же ВСУ, но с прямым приводом на вал компрессора. В боевых условиях оказалось, что без автономного запуска самолеты беззащитны. После этого были введены жесткие требования на время запуска: от нажатия кнопки «запуск двигателя» до выхода его на максимальный режим время не должно превышать 100 секунд.

Единственным прорывным, инновационным самолетом, показанным в 1967 году и оказавшим влияние на соотношение сил главных глобальных игроков (США и СССР), был новый тяжелый перехватчик МиГ-25. Это было заметно даже по его внешнему облику — двухкилевой хвостовой стабилизатор выделял этот самолет среди прочих. Этот самолет произвел сильное впечатление на Пентагон. Но… эта инновация была отражением американской инновации. МиГ-25 должен был решать задачу противодействия американскому разведывательному самолету SR-71. После прекращения в 1960 г. полетов самолета-разведчика U-2 в США решили разработать самолет-разведчик на другом принципе неуязвимости: большую высотность заменили рекордной скоростью (М3). Первый полет SR-71 совершил в декабре 1964 г. Советских самолетов, способных летать с такой скоростью, не было. Было принято решение срочно разработать перехватчик, способный сбивать или хотя бы «отгонять» «американца». И такой самолет был разработан в ОКБ Микояна. Двигатель Р15БФ2-300 для него проектировало прославленное микулинское ОКБ-300, традиционно «приписанное» к ОКБ-155 Микояна так же, как ОКБ-165 Люльки было «приписано» к ОКБ Сухого. Этот «кинжальный», как его называли, перехватчик, по сути, был однорежимным сверхзвуковым самолетом. Он наводился на цель с земли и находился на боевом дежурстве на земле, в случае необходимости взлетая и осуществляя разгон-набор на заданную точку встречи по траектории минимального времени разгона-набора с преимущественно сверхзвуковой скоростью. Для реализации этой ограниченной задачи и был разработан классический турбореактивный двигатель с суммарной степенью сжатия в компрессоре 5 (имелось в виду, что на дозвуке самолет не летает, а на сверхзвуке большая степень сжатия не нужна — торможение скорости набегающего потока в воздухозаборнике, т. е превращение кинетической энергии в потенциальную, обеспечит необходимую степень сжатия).

А вот в США в середине 1960-х гг. перешли от проектирования двигателей по принципу «что получится», классическим примером которого является проектирование двигателя JT3D («Пратт-Уитни») для «Боинга 707», к концептуальному, целевому подходу. Для этого было открыто щедрое финансирование научно-технического задела по федеральным программам на государственные, бюджетные деньги. И здесь сразу США пошли в отрыв, конечно, с крупными «синяками» и «шишками», но — вперед. Особенно это ярко проявилось в проектировании двигателей на фирме «Пратт-Уитни». Вначале произошел переход скачком на двигатели с высокой (5–8) степенью двухконтурности для дозвуковых самолетов большой дальности, первым из которых был военно-транспортный С-5 «Galaxy» (двигатель TF-39-GE), совершивший первый полет уже в 1968 г. США пошли в отрыв, а в СССР авиадвигателестроение стало «тормозить», не сумев воспользоваться уже имеющимся заделом. Причиной этого в первую очередь было отсутствие прорывных проектов самолетов и снижение инновационности самой авиамоторной науки. Как мы увидим далее, переломный 1970-й год застал нашу отраслевую науку врасплох.

При проектировании двигателя с большой двухконтурностью JT9D-PW для 350-тонного (вот это размах!) пассажирского самолета В-747 в основу был заложен принцип минимизации количества опор роторов. И здесь мы должны задать вопрос: а сколько вообще роторов должно быть в турбореактивном двигателе? Один? Два? Три? Четыре? Принцип здесь простой: из школьной физики известно, что мощность — это произведение силы на скорость. В компрессоре или турбине сила, действующая в окружном направлении на лопатки, пропорциональна углу поворота потока между лопаток, а скорость — это окружная скорость вращающихся с диском лопаток.

Угол поворота ограничен геометрией (на 180°, к примеру,

поток разворачивать просто бессмысленно), а окружная скорость — сверхзвуковой скоростью на концах лопаток (волновые потери сильно снижают эффективность преобразования скорости в давление). Таким образом, для уменьшения количества ступеней компрессора и турбины стараются иметь максимально возможную окружную скорость. Если двигатель двухконтурный, то вентилятор и компрессор высокого давления имеют разные диаметры из-за разного расхода воздуха через них. Значит, при одинаковой окружной скорости эти нагнетатели (и вентилятор, и компрессор) будут иметь разные обороты, и чем больше степень двухконтурности, тем больше эта разница. То есть в двухконтурных двигателях минимальное количество роторов, а следовательно, и валов, равно двум.

Исключением является французский двухконтурный одновальный двигатель военного назначения М-53. Здесь пошли на снижение эффективности компрессора высокого давления ради уменьшения количества трудноохлаждаемых «горячих» опор-подшипников — двигатель применяется на сверхзвуковом самолете, да и степень двухконтурности у него невысокая, соответственно невелика и разница диаметров вентилятора и компрессора.

Кроме того, со сжатием воздуха в каждой последующей ступени повышается его температура, а следовательно, увеличивается скорость звука. Поэтому мы можем допустить увеличение окружной скорости в каждой последующей ступени ротора компрессора без боязни увеличения волновых потерь. То есть теоретически каждую следующую ступень компрессора желательно вращать с большей окружной скоростью — уровень волновых потерь это допускает. Иначе, сколько ступеней компрессора — столько должно быть роторов с точки зрения минимизации числа ступеней. Но… при этом кратно увеличивается количество подшипниковых опор, нормальную работу которых при больших окружных скоростях и высоких температурах обеспечивать трудно. Таким образом, один-два ротора для одноконтурного и два-три ротора двухконтурного двигателя — это устоявшаяся практика. При этом в случае длинных валов их часто делают разрезными, каждый на двух опорах. Поэтому даже при двух роторах количество опор может быть не четыре, а больше — например, семь (по две на каждый компрессор, три — на две турбины, где одна из опор — общая, межвальная).

Так вот, при проектировании JT9D отказались от разрезных валов, приняв решение: два ротора — четыре подшипниковых узла. Все бы хорошо, но вскоре оказалось, что «паразитные», «лишние» опоры в разрезных валах через свои силовые связи подобно обручам увеличивали жесткость корпусов двигателя. Как только их убрали, корпус компрессора стало «корежить», превращая его из круглого в овальный. А из-за этого пришлось увеличивать радиальные зазоры между лопатками компрессора и корпусом и катастрофически терять кпд. Корпус компрессора на двигателе JT9D пришлось усиливать с помощью продольной балки-«ухвата», ставшей с тех пор атрибутом двигателей с большой степенью двухконтурности. В общем, классическая ошибка конструктора, обусловленная, как уже отмечалось, всегдашней нехваткой времени. Все просчитать невозможно, и многие решения принимаются интуитивно.

Ниже в таблице без комментариев представлены три наилучших компрессора конца 1950-х гг., воплощающих в себе разные приоритеты (школы) проектирования: минимальное количество ступеней (а следовательно, и массы, и стоимости), максимальную степень сжатия, оптимальное сочетание того и другого. Чем выше степень сжатия в двигателе, тем он экономичнее. Выбирайте, что вам нравится. Каждый вариант имеет свои достоинства и недостатки. Для сравнения в последней строке таблицы представлен достигнутый на сегодня (XXI век) уровень проектирования компрессоров. ЕЗЕ — это европейский газогенератор, «сердце» перспективных двигателей следующего поколения, проектируемых на выполнение «трех Е»: эффективность, экология и энергосбережение. В этом проекте реализованы все последние достижения науки и техники в области авиационного двигателестроения. Следует отметить, что немецкие аэродинамики и конструкторы сохранили свои ведущие позиции в проектировании компрессоров и сегодня.

Двигатели Р11-300 и J-79-GE были самыми массовыми в истории реактивной авиации и не в последнюю очередь благодаря конструкции своих компрессоров. Р11-300 было произведено в разных странах около 20 тыс. штук, a J-79-GE, тоже включая лицензионное производство (вплоть до 1993 г. в Израиле), — около 17 тыс. штук.

Таким образом, в мире сложилось две школы проектирования компрессоров турбореактивных двигателей: двухвальные малоступенчатые и одновальные многоступенчатые. К первой школе принадлежали «Пратт-Уитни» в США и ОКБ-300 в СССР. Ко второй школе — соответственно, «Дженерал Электрик» в США, ОКБ-36 (Добрынин), ОКБ-165 (Люлька), ОКБ-19 (Соловьев) в СССР. Далее оказалось, что при повышении температуры газа перед турбиной и связанным с этим переходом к двухконтурной схеме двигателя в выигрыше оказалась последняя школа. Ее разработки компрессоров, по сути, не претерпели изменений при постановке на своем валу впереди компрессора низкого давления (вентилятора и «бустера» — подпорных ступеней). А вот сторонникам первой школы пришлось заново разрабатывать многоступенчатый компрессор… или переходить на трехвальную схему. Но и в последнем случае компрессор нужно было разрабатывать заново: трансмиссия (вал вентилятора) не проходил через втулочное сечение малого диаметра компрессора. Так вторая школа получила конкурентное преимущество во времени.

Поделиться:
Популярные книги

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Обыкновенные ведьмы средней полосы

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Обыкновенные ведьмы средней полосы

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Гром над Тверью

Машуков Тимур
1. Гром над миром
Фантастика:
боевая фантастика
5.89
рейтинг книги
Гром над Тверью

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Сонный лекарь 4

Голд Джон
4. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 4

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая