Чтение онлайн

на главную

Жанры

Бог и Мультивселенная. Расширенное понятие космоса
Шрифт:

Назад к истоку

Как мы уже знаем, наблюдаемое нами реликтовое излучение появилось в тот момент, когда через 380 000 лет после Большого взрыва сформировались атомы, а фотоны рассеялись в стороны от оставшейся части вещества. В то время поверхность Вселенной имела участки неоднородной плотности, сформировавшиеся из первоначального источника за этот период времени. С тех пор Вселенная расширилась в 1100 раз и температура излучения упала с 3000 K до 2,725 K.

В ходе наблюдений анизотропии реликтового излучения исследователи измеряют различия в температуре в двух направлениях, разделенных углом . Когда они исследуют реликтовое излучение в двух областях неба, разделенных углом = 180°, и обнаруживают различие в температуре, это называется дипольной анизотропией. Вспомните,

что этот конкретный вид анизотропии, появляющийся вследствие нашего движения относительно реликтового фона, был обнаружен Смутом и его группой, когда они отправили свой новый дифференциальный микроволновой радиометр в полет на борту самолета-разведчика У-2 в 1976 году. При исследовании ранней Вселенной этот эффект вычитается.

Когда наблюдатели смотрят на четыре области, разделенные углом 90°, и видят различие в температуре, они говорят о квадрупольной анизотропии. Это фоновый эффект движения Млечного Пути, и его также игнорируют. В общем случае для угла l в градусах имеется порядок мультиполя l = 180/ l, и, как мы увидим, чем выше этот порядок, то есть чем меньше угол, тем важнее он для нас.

Если мы построим график зависимости квадрата относительного перепада температур от l, то получим так называемый угловой спектр мощности. На основании этих измерений с помощью теоретического анализа и компьютерной симуляции можно сделать реконструкцию спектральной плотности мощности звука, вызванного первичными флуктуациями. Обсерватория СОВЕ, ограниченная угловой разрешающей способностью 7°, имела предельное значение порядка мультиполя l = 20. Однако этого было достаточно, чтобы подтвердить, что флуктуациям хотя бы приблизительно была свойственна масштабная инвариантность, предсказанная инфляционной моделью. Согласно расчетам, при углах менее 1°или l > 200 в угловых спектрах должны появиться пики, соответствующие гармоникам изначальных акустических колебаний (см. главу 11).

Переходя на сторону победителей

Еще до объявления результатов СОВЕ исследовательские группы со всего мира поспешили примкнуть к побеждающей стороне, к тому, что было признано одной из величайших научных возможностей, существовавших когда-либо, — возможности оглянуться назад, на первые моменты жизни Вселенной. На своем веб-сайте Lambda, посвященном исследованиям реликтового излучения, НАСА перечисляет 20 экспериментов, которые проводились на протяжении 1990-х годов с использованием либо наземных телескопов, либо высотных аэростатов, разработанных специально для измерения анизотропии{285}.

Большинство этих приборов имели большую угловую разрешающую способность, нежели была у обсерватории СОВЕ (7°), хотя с их помощью и нельзя было получить такое же количество данных, как с помощью орбитального спутника. Канадский телескоп SK, установленный в городе Саскатуне, провинция Саскачеван, имеет угловую разрешающую способность 0,2–2° в шестичастотных полосах между 26 и 46 ГГц, покрывая таким образом диапазон значений l от 54 до 404{286}.

Еще большее впечатление производит Австралийский компактный массив радиотелескопов (Australia Telescope Compact Array, ATCA), состоящий из пяти антенн диаметром 22 м каждая, расположенных на расстоянии 30,6 м друг от друга в направлении с востока на запад. Угловая разрешающая способность этого массива составляет впечатляющие 2' (угловые минуты) (0,03°) при частоте 8,7 ГГц, и он покрывает значения l от 3350 до 6050{287}. Результаты этих экспериментов дали первые намеки на то, что нам еще многое предстоит узнать о РИ, в частности, что при меньших углах его спектр не плоский.

Хотя теперь быстрее всего было бы перейти к последним результатам, в этой и следующей главах я собираюсь представить в хронологической последовательности серию графиков все увеличивающейся точности, для того чтобы продемонстрировать, как работает

наука, и для того, чтобы отдать дань уважения первопроходцам этого впечатляющего пути новых научных открытий.

На рис. 13.5 изображен угловой спектр вплоть до l = 1000, полученный в результате 17 экспериментов, по состоянию на 1998 год. На этом графике можно увидеть первые (существенные) акустические пики.

Рис. 13.5. Обобщенные данные по угловой анизотропии РИ по состоянию на 1998 год. Изображение из работы: HancockS. et al. Constraints on Cosmological Parameters from Recent Measurements of Cosmic Microwave Background Anisotropy // Monthly Notices of the Royal Astronomical Society, 294, 1998. — № 1 (February 11): L1-L6. Использовано с согласия издательства Оксфордского университета 

В тот же период проводились два выдающихся эксперимента, BOOMERANG и MAXIMA, с использованием высотных аэростатов. Собранные при этом данные позволили значительно усовершенствовать график спектральной плотности. Об этих результатах, а также о работе еще более впечатляющего аппарата под названием «Микроволновый анизотропный анализатор Уилкинсона» (Wilkinson Microwave Anisotropy Probe, WMAP) и о космической обсерватории «Планк» мы поговорим в следующей главе.

Итак, в конце второго тысячелетия нашей эры мы получили убедительные свидетельства в пользу того, что в первые моменты жизни нашей Вселенной происходило экспоненциальное расширение, называемой инфляцией, которое завершилось примерно на 10– 32 доле секунды. Спустя несколько миллиардов лет более спокойного расширения наша Вселенная снова начала раздуваться экспоненциально, хотя и со значительно меньшей скоростью, и это, вероятно, будет продолжаться вечно. В какой-то момент далеко в будущем обитатели планеты, все еще согреваемой Солнцем, не смогут увидеть во Вселенной ничего, кроме Млечного Пути и гало галактики Андромеда, когда две эти галактики сольются, поскольку все остальное будет находиться за пределами видимости.

Глава 14.

МОДЕЛИРУЯ ВСЕЛЕННУЮ

Обозревая небо

В главе 12 я описал, как благодаря обзорам красных смещений галактик была открыта невероятная паутиноподобная структура видимой части Вселенной: скопления галактик, формирующих нити, разделенные практически пустыми войдами. Начиная с 2000 года проводились и проводятся десятки новых обзоров, благодаря которым имеющаяся база данных существенно расширилась{288}.

В ходе наиболее обширного из них, Слоановского цифрового небесного обзора (Sloan Digital Sky Survey, SDSS), использовался оптический телескоп с широкоугольным 2,5-метровым объективом, установленный в обсерватории «Апачи-Пойнт», штат Нью-Мексико. Обзор SDSS начался в 2000 году и продолжается до сих пор. За это время накопились результаты наблюдений 500 млн. объектов, включая спектры 500 тыс. новых объектов, свет от которых шел к нам 7 млрд. лет.

Одна из составных частей проекта SDSS — спектроскопический обзор барионных колебаний (Baryon Oscillation Spectrographic Survey, BOSS) — особенно важен с точки зрения космологии. В ходе этого исследования ученые нанесли на карту Вселенной пространственное распределение ярких красных галактик (LRG), а также квазаров. Цель этого обзора — получить акустический сигнал, идущий от барионов (атомного вещества) ранней Вселенной{289}. В распределении ранних галактик заключен след, подобный тому отпечатку, который звуковые волны, вызванные первичными флуктуациями, оставили на узоре реликтового излучения. Хотя из-за этих флуктуации неоднородные участки появились не только в атомной, но и в темной материи, последняя не сопротивляется гравитационному коллапсу участков высокой плотности, в то время как атомное вещество имеет давление, которое противится гравитации. Вследствие действия этих двух противоположных сил возникают колебания, влияющие на распределение галактик в пространстве.

Поделиться:
Популярные книги

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Пустоши

Сай Ярослав
1. Медорфенов
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Пустоши

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Наследник в Зеркальной Маске

Тарс Элиан
8. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник в Зеркальной Маске

Королевская Академия Магии. Неестественный Отбор

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Королевская Академия Магии. Неестественный Отбор

Proxy bellum

Ланцов Михаил Алексеевич
5. Фрунзе
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Proxy bellum

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия