Большая энциклопедия техники
Шрифт:
2. Гидротурбинный генератор – это генератор переменного или постоянного тока, который приводится в движение гидравлической турбиной. Гидротурбинный генератор – это синхронный генератор, ротор которого располагается на одном валу вместе с колесом турбины. Мощность такого генератора достигает 100 000 кВт при скорости вращения до 1500 об/мин и напряжении до 16 000 В. Синхронные гидротурбинные генераторы по своим размерам и весу больше всех других электрических машин. Только диаметр ротора достигает 15 м. Большое влияние на мощность турбины оказывает скорость ее вращения, маховый момент ротора и длина линии электропередачи. Чаще всего у синхронного гидротурбинного генератора вертикальная ось вращения, когда в подвесном подпятнике происходит осевое давление воды на рабочее колесо турбины. При этом подпятник располагается выше ротора генератора. В зонтичном синхронном генераторе подпятник располагается под ротором генератора и один из трех направляющих подшипников находится в турбине.
Обмотка переменного тока располагается на статоре, который охватывает
3. Паротурбинный генератор – это синхронный генератор переменного или постоянного тока, приводимый в движение паровой турбиной. Данные генераторы чаще всего бывают четырехполюсные и двухполюсные со скоростью вращения от 1500 до 3000 об/мин. Ротор синхронного паротурбинного генератора представляет собой массивный стальной цилиндр с прямоугольными пазами, в которых находится обмотка возбуждения. Центробежная сила обмотки воспринимается клиньями и большими бандажами кованой стали, охватывающими торцовые части обмотки. Корпус статора стальной неразъемный. В отличие от гидротурбинного синхронный паротурбинный генератор имеет диаметр до 1 м, но длину ротора до 6,5 м. Для работы паротурбинных генераторов малых мощностей применяется протяжная система вентиляции, где необходимый напор воздуха создается центробежными роторными вентиляторами. При замкнутой системе вентиляции воздухоохладители располагаются под самим генератором. Возбудитель паротурбинного генератора соединяется с ротором посредством гибкой муфты и способен питать обмотку возбуждения через контактные кольца.
Данный генератор состоит из неподвижного якоря-статора и вращающегося индуктора-ротора. На внутренней поверхности статора в его пазах располагается обмотка переменного тока. Статор генератора выполнен из тонкой электротехнической стали, которая изолирована лаковой пленкой или бумагой. Все эти стальные листы укрепляются в станине машины. Ротор находится внутри статора и представляет собой стальной цилиндр, в пазах которого размещается обмотка возбуждения постоянного тока. В тихоходных машинах ротор имеет форму колеса или звезды. В синхронных генераторах малой мощности иногда применяют конструкции с расположенной обмоткой переменного тока на роторе и обмоткой возбуждения на статоре. Синхронный генератор переменного тока используется обычно в качестве источника переменного тока постоянной частоты, что возможно при неизменной скорости вращения ротора. При симметричной трехфазной нагрузке синхронного генератора переменного тока по обмоткам статора протекает ток также трехфазно и симметрично. Данный ток способен создавать свое магнитное поле, ось которого вращается со скоростью, равной скорости вращения ротора. Поэтому данный генератор и получил название «синхронный генератор», так как подчеркивает синхронность вращения ротора и магнитного поля статора. Характер взаимодействия вращающегося магнитного поля статора с полем электромагнитов ротора зависит от сдвига фаз между токами нагрузки и ЭДС генератора. При этом механическая мощность преобразуется в электрическую. В современных электрических установках синхронные генераторы зачастую работают параллельно на общую нагрузку, что возможно при строго синхронной скорости вращения генераторов. Это вполне осуществимо благодаря свойству синхронной машины автоматически поддерживать синхронизм. При параллельной работе синхронных генераторов при изменении режима одного из них начинается ответная реакция стремящегося восстановить нарушенный режим уравнительного тока. При уменьшении или увеличении тока возбуждения ток статора из-за возникновения реактивной составляющей возрастает. При нарушении синхронизма торможение одной машины и ускорение другой уменьшается. Возвращение ротора к синхронному вращению сопровождается затухающими колебаниями его угловой скорости вращения около ее значения. Иногда эти колебания нарушают спокойную работу машины, что называется качание. При правильном выборе махового момента генератора качание можно устранить с помощью медных стержней в полюсных наконечниках ротора. Опасные процессы могут возникнуть и при коротком замыкании, когда ток в обмотке статора возрастает в 15 раз, это приводит к возникновению индуктированного тока в обмотке возбуждения или может привести к механическим повреждениям синхронного генератора. Синхронные генераторы переменного тока находят применение в современных электрических установках.
Синхронный компенсатор
Синхронный компенсатор – это синхронная электрическая машина, которая работает в режиме двигателя, не имея нагрузки на вал. Применяется синхронный компенсатор для повышения мощности коэффициента сети, регулирования напряжения электрической сети или в промежуточных точках ЛЭП (путем изменения тока возбуждения). Мощность его достигает сотен МВт.
Синхронный электродвигатель
Синхронный электродвигатель – это синхронная электрическая машина, которая работает в режиме двигателя более высокой мощности, нежели асинхронный двигатель. Но конкурировать с асинхронным двигателем не может из-за необходимости возбуждения постоянным током от возбудителя
Мощность синхронного электродвигателя от долей Вт до нескольких десятков МВт.
Стабилизатор электрический
Стабилизатор электрический – это электронное устройство для принудительного автоматического поддержания заданной постоянной величины электрического тока, напряжения, магнитного потока, температуры и угловой скорости или мощности при произвольном изменении параметров питающей сети или нагрузки цепи.
По способу стабилизации стабилизаторы делятся на параметрические, компенсационные, комбинированные; по режиму работы – на стабилизаторы непрерывного действия и дискретные (релейные или импульсные); по типу силовых приборов (стабилизирующего элемента) – на электронные (полупроводниковые, микроэлектронные, вакуумные, газоразрядные) и ферромагнитные (феррорезонансные).
Параметрические стабилизаторы относятся к разомкнутым системам регулирования с нелинейным ограничением величины стабилизируемого параметра (например, в стабилизаторах напряжения эту функцию может выполнять стабилитрон).
Начиная с некоторого значения стабилизируемого параметра (х = х0), мощность Р, потребляемая стабилизирующим элементом в параметрических стабилизаторах резко возрастает, благодаря чему величина x не может существенно превышать х0. Компенсационные стабилизаторы представляют собой замкнутые системы автоматического регулирования), работающие в режиме стабилизации.
В комбинированных стабилизаторах используется компенсационный принцип стабилизации выходной переменной в сочетании с управлением по входному сигналу. К основным узлам компенсационных и комбинированных стабилизаторов относятся источник опорного (эталонного) сигнала, сравнивающее устройство, усилитель-преобразователь и управляющий (регулирующий) элемент.
Наибольшее распространение нашли стабилизаторы напряжения и тока. Для стабилизации переменного напряжения применяют ферромагнитные стабилизаторы, действие которых основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей. Для стабилизации постоянного напряжения используют электронные стабилизаторы (в основном на полупроводниковых приборах, реже – на электронных лампах и газоразрядные), в которых стабилизация осуществляется методом регулирования по отклонению от установленного уровня напряжения.
Стабилизация тока (в основном постоянного) осуществляется либо при помощи электронных приборов с резко выраженной нелинейностью вольт-амперной характеристики (например, электровакуумный диод), либо электронными усилителями с отрицательной обратной связью по току.
Различают стабилизаторы переменного и постоянного напряжения, стабилизаторы постоянного тока. Стабилизаторы переменного напряжения представляют собой устройства, предназначенные для электропитания нагрузки (различное электрооборудование, офисная и бытовая аппаратура, приборы) стабилизированным переменным напряжением 220 В и частотой 50 Гц при отклонении сетевого напряжения в определенных пределах. Промышленность выпускает стабилизаторы переменного напряжения в однофазном и трехфазном исполнении. Трехфазные стабилизаторы в зависимости от модели выпускаются в виде единого блока или трех однофазных блоков и щита коммутации. Производится стабилизация только фазных напряжений. Выпускаются стабилизаторы со ступенчатым регулированием напряжения. Они состоят из следующих основных узлов: автотрансформатора с обмоткой, имеющей заданное количество коммутируемых выводов одной обмотки или вольтодобавочных обмоток (в зависимости от модели); силовых ключей. Стабилизация постоянного напряжения осуществляется газоразрядными и полупроводниковыми стабилитронами. Стабилизация тока производится электронными стабилитронами.
Стартер
Стартер – это устройство для запуска двигателя внутреннего сгорания. Существуют несколько видов стартеров. Электрический стартер запускает двигатели автомобилей и тракторов. Пневматический электрический стартер запускает двигатели авиационной техники. По принципу действия стартер бывает инерционный, комбинированный и прямого действия. При этом управление может быть дистанционным или путем нажатия на педаль.
Основные узлы стартера: двигатель внутреннего сгорания, редуктор, устройство сцепления и расцепления с валом основного двигателя, пусковое устройство.
Стартеры подразделяются на электрические, пневматические, гидравлические, бензиновые, турбостартеры.
Стартеры различают по способу подключения обмотки возбуждения относительно обмотки якоря на двигатели последовательного, параллельного и смешанного возбуждения.
В электродвигателях с параллельным подключением обмотки возбуждения ток не зависит от нагрузки (тока якоря), поэтому частота вращения практически не меняется с ростом момента нагрузки. У электродвигателей последовательного возбуждения ток в обмотке возбуждения равен току в обмотке якоря и магнитный поток пропорционален току якоря. Поэтому с уменьшением момента сопротивления на валу двигателя частота вращения увеличивается. В стартерах со смешанным возбуждением характеристика занимает среднее положение.