Большая энциклопедия техники
Шрифт:
Генератор производит, как правило, одночастотное колебание, а нагрузкой является параллельный колебательный контур. Сопротивление контура активно, на резонансной частоте максимально.
В усилительном звене генератора применяются операционные усилители и транзисторы, биполярные и полевые. Частоту производящихся колебаний определяет баланс амплитуд на определенной частоте, в связи с соответствием усилителя с резонансной нагрузкой резонансной же частоте контура.
От выбранного рабочего режима для генератора с самовозбуждением зависит процесс генерации колебаний. Режим определяется коэффициентом обратной связи и питающим напряжением. При выборе режима важно обращать внимание на положение рабочей точки на усилительном элементе, зависящей от напряжения смещения. Самовозбуждение легко возникает при расположении
Процесс самовозбуждения проходит беспрепятственно, увеличивается амплитуда тока базы и в то же время возрастает амплитуда выходного напряжения.
Для эксплуатации генератора с самовозбуждением необходимо использовать оба перечисленных режима возбуждения, т. е. комбинированную схему смещения. В момент включения удобен мягкий режим, но в дальнейшем он приводит к большим потерям в схеме генератора, поэтому после установления мягкого надо перейти к жесткому режиму.
Одним из главнейших параметров генератора с самовозбуждением считается стабильность частоты. Ее количественной оценкой выступает обратная величина. Эта обратная величина представляет собой относительную нестабильность частоты. Под влиянием дестабилизирующих факторов параметры генератора меняются, в результате чего изменяются и фазовые углы. Любопытно, что после этой операции в генераторе устанавливается другой стационарный режим колебаний и сумма фазовых углов снова соответствует соотношению.
Повысить стабильность, так необходимую генератору с самовозбуждением, можно с помощью нескольких приемов. Путем параметрической стабилизации – при поддержке постоянства колебательной системы и нужных параметров генератора. Для осуществления такой стабилизации необходимо поддерживать постоянство питающих напряжений и защищать колебательную систему от влияния внешних воздействий. Повысить стабильность можно и другим путем. Для этого необходимо выбрать такие схему и режим работы генератора, при которых фазовые углы изменялись бы незначительно. Еще один вариант повышения стабильности заключается в компенсации изменений температуры элементов генератора, причем они должны быть противоположными другим изменениям по своему характеру. Этим элементом может быть колебательный контур, который увеличивается с повышением температуры. И, наконец, последний способ добиться стабилизации – с использованием кварцевых резонаторов, которые обладают высокой стабильностью как колебательные системы.
Существуют синхронные генераторы с самовозбуждением серии SJ, которые предназначаются для долгого режима работы как источник переменного тока. Они работают в составе передвижных и стационарных агрегатов. Такие генераторы могут работать автономно, параллельно с другими генераторами, а также с жесткой сетью.
Двигатели внутреннего сгорания, электродвигатели и различные турбины используются в качестве привода такого генератора.
Генератор с самовозбуждением применяется в радиопередающих устройствах, где он генерирует энергию постоянного и переменного тока в энергию радиочастотных колебаний.
Генераторная лампа
Генераторная лампа – это электронная лампа, которая предназначена для генерирования энергии источника переменного или постоянного тока в энергию электромагнитных колебаний.
Используются генераторные лампы в различных радиопередатчиках, физических и медицинских радиоэлектронных устройствах, измерительных приборах, а также в установке индукционного нагрева. Применяются генераторные лампы и в диапазонах волн: УКВ и коротковолновом. У таких ламп небольшие расстояния между электродами, их выводы утолщены и снабжены малыми индуктивностями, а изолирующие элементы изготовлены из материалов, характеризующихся малыми диэлектрическими потерями.
В дециметровом диапазоне волн генераторные лампы обладают резонансной системой колебаний, которая
Такие колебательные системы встречаются в металлокерамических, маячковых лампах и резонатронах. В отличие от предыдущих в миллиметровом, сантиметровом и дециметровом диапазонах волн используются лампы бегущей и обратной волн, магнетроны и клистроны.
Генераторную лампу с тройным количеством электродов – триод – впервые применил А. Мейснер в 1913 г. С ее помощью немецкий ученый преобразовывал высокочастотные колебания. В России генераторная лампа стала использоваться с первых лет становления Советской власти. М. А. Бонч-Бруевич в лаборатории города Горький производил новейшие разработки. В 1919 г. он доказал возможность создания мощных генераторных ламп, применив охлаждение анода водяным способом. Через 4 года Бонч-Бруевич изобрел генераторную лампу, мощность которой была 25 кВт, а еще через 1,5 года лампу мощностью 40 кВт. Под руководством С. А. Векшинского и С. А. Зусмановского с 1922 г. производство генераторных ламп было поставлено на поток. Дальнейший период развития генераторных ламп связан с их усовершенствованием. В 1930 г. П. А. Остряков впервые сконструировал генераторную лампу с принудительным воздушным охлаждением. Спустя 3 года инженер Н. И. Оганов и академик А. Л. Минц разработали первый разборный триод, мощность которого была равна 200 кВт. В 1956 г. эти же ученые совместно с инженером М. И. Басалаевым сконструировали разборный триод с мощностью в 500 кВт.
Различаются генераторные лампы по числу электродов, по диапазонам радиочастот, по самой большой мощности, которую рассеивает отрицательный заряд, а также по конструкции баллона и по характеристике работы. Число электродов бывает разным и носит название триод, пентод, тетрод и т. д. Анод рассеивает мощности малую – 50 Вт, среднюю – 5 кВт, большую – более 5 кВт. Баллон может состоять из стекла, металла, металла и стекла вкупе и из металлокерамики. Работа генераторной лампы делится на импульсную и работу непрерывного действия.
В связи с вырабатываемым генераторной лампой диапазоном волн и мощностью конструкции их различны и каждая обладает конкретной особенностью. Маломощные генераторные лампы работают при отрицательном напряжении в 500 Вт, по своему строению схожи с приемно-усилительными лампами. Некоторая часть электрической энергии источника питания, подводимая к генераторной лампе, генерируется в полезную энергию. Другая часть энергии нагревает анод и рассеивается им. Генераторные лампы со средней и большой мощностью работают при напряжении отрицательного заряда в 20 кВт. В них применяются разнообразные катоды и аноды. Вольфрамовый, вольфрамовый торированный и карбидированный катоды используются с подогревом. Медный анод охлаждают воздушным или водяным способом. Анод становится частью баллона генераторной лампы и снабжается специальным радиатором. По другому способу анод вместе с сетками выплавляют из молибдена и вольфрама, металлов, которые являются тугоплавкими.
При изготовлении очень мощных генераторных ламп, мощностью 500—1500 кВт, их конструируют полуразборными или полностью разборными. Полуразборные генераторные лампы охлаждают водяным способом, а в разборных лампах постоянно откачивают воздух вакуумными насосами.
Декадно-шаговый искатель
Декадно-шаговый искатель – это электромеханическое устройство, которое предназначено для автоматического анализа поступающих импульсов. Каждый импульс соответствует одной определенной цифре, которая набирается при пульсовом наборе. Этот искатель является основным элементом декадношаговой АТС.
Декадно-шаговый искатель изобрел А. Б. Строуджер в 1889 г. Его изобретение настолько успешно внедрилось в систему телефонной связи, что и по сей день АТС декадно-шагового типа составляет около 25% от общего количества ГТС. Первую такую АТС с шаговыми искателями сконструировали М. Ф. Фрейденберг и С. М. Бердичевский-Апостолов в 1895 г.
Основными частями данного искателя являются контактное поле, к которому подключены все абонентские линии; щетка, с которой связана линия вызывающего абонента; двигающий механизм, устанавливающий щетку на требуемом контакте, таким образом соединяя линию вызывающего абонента с линией вызываемого.