Большая энциклопедия техники
Шрифт:
Фотографический увеличитель
Фотографический увеличитель – устройство оптико-механическое, проецирующее на фотобумагу увеличенное изображение негатива при процессе фотопечати. Конструкция увеличителя включает осветитель, держатель негатива, проекционный объектив, экран, вертикальную штангу. Принцип действия устройства основан на прохождении светового потока, созданного осветителем, через негатив и направлении его в объектив. Объектив создает изображение кадра негатива на светочувствительном слое фотобумаги, которая находится на экране. И в светочувствительном слое появляется скрытое фотографическое изображение. Оно проявляется, фиксируется и становится позитивным – видимым. При помощи фотографического увеличителя возможна печать и с диапозитива, а также проецирование диапозитива на проекционный экран. Осветитель фотографического увеличителя – это матовая лампа накаливания, за которой находится сферический отражатель, увеличивающий
Фоторужье
Фоторужье – фотоаппарат с длиннофокусным телеобъективом.
Держатель объектива имеет вид ружейной ложи и снабжен приспособлением для фокусировки объектива и спуска фотозатвора. При съемке держатель жестко фиксирует положение фоторужья. При помощи фоторужья осуществляется съемка дальних или труднодоступных объектов, например диких животных, не допускающих к себе близко, поэтому съемка таким фоторужьем называется фотоохотой.
Фоторужье.
Фототрансформатор
Фототрансформатор – прибор, преобразующий фотоснимки, которые сняты при наклонном положении оси фотоаппарата, в горизонтальный снимок необходимого масштаба, что используется при производстве фотоплана. Изображение снимка, полученное на экране, не отличается от горизонтального снимка, если положение объектива находится в вертикальной плоскости, если экран к ней перпендикулярен, если снимок, экран и главная плоскость объектива пересекаются по одной прямой. Чтобы обеспечить эти условия, фототрансформатор имеет приспособления-инвенсоры, сокращающие элементы, устанавливаемые в фототрансформаторе. Это изображение после получения на экране фиксируется на фотобумаге.
Фотоэлектрический экспонометр
Фотоэлектрический экспонометр – прибор, определяющий освещенность объекта съемки фотоэлектрическими приемниками света – фоторезисторами или фотоэлементами. Они включены в цепь индикатора тока, представляющего собой гальванометр стрелочного типа. Угол отклонения гальванометра пропорционален току в цепи фотоприемника, этот угол отклонения и размер светового потока, идущего на светоприемную площадку фотоприемника, определяют освещенность объекта съемки. Показания стрелки гальванометра переходят на калькулятор, который показывает экспозиционные параметры. Индикатор тока – это светодиод, который включен в мостовую цепь. Видоискатель дает возможность наблюдать объект и определяет его освещенность. Конструкция фотоэлектрического экспонометра включает пластиковый корпус, на котором и внутри которого находятся элементы прибора: шкала измерителя, шкала светочувствительности фотоматериала, вспомогательная шкала калькулятора, шкала частот киносъемки, шкала значений диафрагмы, шкала выдержек, стрелка гальванометра, входное окно фотоэлектрического экспонометра. Существуют и экспонометры, вмонтированные в киносъемочные аппараты и связанные с механизмом диафрагмы. Но также бывают и фотоэлектрические экспонометры, калькулятор которых расположен на корпусе киносъемочного аппарата, и такие экспонометры самостоятельны.
Хромоскоп
Хромоскоп – прибор, дающий цветное изображение. Действие прибора основано на оптическом совмещении двух или трех цветоделенных черно-белых фотографических изображений, которые освещаются через специальные светофильтры, имеющие разную окраску. Впервые такой прибор был сделан в 1862 г. во Франции. Его конструктор – ученый Л. Дюко дю Орон. Этот прибор он использовал при печати цветных фотографий. Хромоскоп выделяет детали изображения,
Хронизатор
Хронизатор – это электронное устройство, которое задает временные характеристики импульсов. Импульсы жестко стабилизированы во времени. Примером подобных импульсов могут служить импульсы запускающие, отчетные, которые применяются в радиолокации, электросвязи и телевизионных передающих станциях. Название хронизатора происходит от греческого слова chronos, что в переводе означает «время».
Хронизатор обеспечивает протекание нескольких процессов синхронно, порядок очередности процессов подчиняется временным соотношениям. В радиолокационных станциях хронизатор синхронизирует излучение сигналов радиопередатчиками, запирание приемного устройства на время работы передатчиков, а также запуск индикаторных разверток во время приема сигналов и т. д. В телеметрической, импульсной многоканальной связи и других информационных системах хронизатор расставляет жестко по времени маркеры слов, адресов, информационные символы цифровой передачи и другие сигналы.
Хронизатор составляет генератор стабильных частотных колебаний, такой как молекулярный генератор, кварцевый и т. д. Колебания генератора синхронизируют процесс, создают метки местного времени. Колебания применяются непосредственно с выхода генератора или после преобразования их в импульсы или колебания определенных частот, амплитуды и фазы.
Цветное телевидение
Цветное телевидение – это телевидение, в котором одновременно передается информация яркости и цвета изображения. Цветное телевидение доносит до зрителя богатство красок, делая восприятие изображения более полным.
Механизм передачи цветных изображений основывается на теории трех компонентов цветового зрения человека. Оптически многообразие природных цветов можно воспроизвести тремя основными цветами: красным, синим и зеленым. За счет этого в цветной передающей телекамере при помощи трех световых фильтров создаются три одноцветных оптических изображения объекта. Изображения создаются на светочувствительной мишени передающей телевизионной трубки. Телевизионный сигнал формируется и передается в канал связи цветного телевидения благодаря методам кодирования цветовой информации. В цветном телевизоре с помощью декодирования видеосигнал выделяется из телевизионного сигнала. Поступая на приемную телевизионную трубку, видеосигнал начинает управлять яркостью свечения люминофоров.
Самым распространенным считается трехцветный кинескоп с тремя лучами и теневой маской, в котором видеосигналы подаются в одно время на модуляторы трех электронных прожекторов. Амплитуда видеосигналов изменяется и вместе с ней изменяется ток электронных лучей. Люминофоры, как правило, наносятся на экран цветной приемной телевизионной трубки мозаичными кружками, которые образуют группы триад. В каждой триаде находится три кружка люминофоров, светящихся своим цветом под действием электронных лучей. Каждый люминофор светится либо красным, либо синим, либо зеленым светом. Чтобы цвет на экране правильно воспроизвелся, в канале передачи устанавливается матричный цветокорректор, который преобразует линейные видеосигналы в сигналы основных цветов приемника.
Русским инженером И. А. Адамианом в 1907—1908 гг. был предложен метод передачи цветовых кадров. Через 17 лет он же предложил систему телевидения с тремя цветами и последовательной передачей цветовых полей. Поля передавались развертывающим диском П. Нипкова. Второй проект Адамиана технически реализовал в 1928 г. англичанин Дж. Бэрдом. В США в 1929 г. ученые лаборатории «American telephone and telegraph company» продемонстрировали одновременную систему цветного телевидения с механической разверткой. Передача сигналов в системе осуществлялась с помощью трех независимых каналов. В том же году советский инженер Ю. С. Волков использовал в приемнике цветного телевидения электронно-лучевую трубку с тремя экранами. Полупрозрачные зеркала оптически совмещали три цветовых изображения.