Большая Советская Энциклопедия (БИ)
Шрифт:
Энзимология — учение о ферментах, вполне самостоятельная область Б. В ней проблема строения белков-ферментов тесно переплетается с физико-химическими проблемами — химической кинетикой и катализом. В 3-й четверти 20 в. внесено много нового в представления о структуре ферментов, о их присутствии в нативном состоянии в виде сложных комплексов. Анализ строения ферментов в сопоставлении с проявляемой ими в разных условиях активностью позволил выяснить значение отдельных аминокислот (главным образом цистеина,лизина,гистидина,тирозина,серинаи т.д.) в формировании активного центра ферментов. Выяснены структура многих коферментов, их значение для ферментативной активности, а также связь между коферментами и витаминами. Большой вклад в развитие энзимологии в первой половине 20 в. внесли Р. Вильштеттер, Л. Михаэлис, Г. Эмбден, О. Мейергоф (Германия), Дж. Самнер, Дж.
Эволюционная и сравнительная Б. Исследования по Б. животных, растений и микроорганизмов показали, что, несмотря на общность основных биохимических структур и процессов у всех живых организмов, имеются и специфические различия, зависящие от уровня онто- и филогенетического развития изучавшихся объектов. Накопленные факты позволили заложить фундамент сравнительной Б., задача которой — найти закономерности биохимической эволюции организмов. Большое теоретическое значение имеет проблема происхождения жизни на Земле. Некоторые важные положения теории А. И. Опарина о происхождении жизни получили экспериментальное подтверждение в работах института им. Баха, кафедры Б. растений МГУ и ряда зарубежных лабораторий (И. Оро, С. У. Фокс в США; и др.).
Гистохимия. Цитохимия. По мере развития техники морфологических исследований, особенно после введения в практику лабораторной работы электронной микроскопии, открывшей многочисленные, ранее неизвестные структуры в составе клеточного ядра и протоплазмы, перед Б. встали новые задачи. На стыке морфологических и биохимических исследований возникли новые отрасли — гистохимияи цитохимия, изучающие локализацию и превращение веществ в клетках и тканях и использующие биохимические и морфологические методы.
Биоорганическая химия. Подробные исследования структуры биополимеров — простых и сложных белков, нуклеиновых кислот, полисахаридов и липидов, а также анализ действия биологически активных низкомолекулярных природных соединений (коферментов, нуклеотидов, витаминов и т.д.) привели к необходимости изучения связи между строением вещества и его биологической функцией. Постановка этого вопроса вызвала развитие исследований, находящихся на грани биологической и органической химии. Данное направление исследований получило наименование биоорганической химии.
Молекулярная биология. Разработка методов разделения субклеточных структур (ультрацентрифугирование) и получение отдельно фракций, содержащих клеточные ядра, митохондрии,рибосомы и т.п., позволили детально исследовать состав и биологические функции выделенных образований. Применение методов электрофореза в сочетании с хроматографией дало возможность детально характеризовать высокомолекулярные соединения. Параллельно улучшалась техника аналитических определений, позволявшая исследовать ничтожное количество материала. Это было связано с внедрением в биологию, в том числе и в Б., физических (главным образом оптических) методов исследования (флуорометрия, спектрофотометрия в различных областях спектра, масс-спектрометрия, ядерномагнитный и электронно-парамагнитный резонанс, газово-жидкостная хроматография), с применением радиоактивных изотопов, чувствительных автоматических анализаторов аминокислот, пептидов, нуклеотидов, полярографии, высоковольтного электрофореза и т.д. Всё это привело к появлению ещё одного самостоятельного ответвления Б., тесно связанного с биофизикой и физической химией и названного молекулярной
Составной частью молекулярной биологии можно считать молекулярную генетику, несмотря на некоторые специфические её задачи. Так, например, анализ механизма возникновения ряда наследственных нарушений обмена веществ и функций организма позволил выяснить роль выпадения или извращения биосинтеза тех или иных белковых веществ, обладающих ферментативной, иммунной или другой биологической активностью. Сюда относятся также исследования нарушений в обмене углеводов, аминокислот (например, фенилаланина, тирозина, триптофана и др.), образования патологических форм гемоглобина и т.д.
Благодаря развитию новых методов исследования Б. в 1950—1970 гг. достигла крупных успехов. Это прежде всего — выяснение строения белков, определение последовательности расположения в них аминокислот. Впервые была выяснена последовательность расположения аминокислот в гормоне белковой природы — инсулине — английским биохимиком Ф. Сангером, затем в ферменте рибонуклеазе К.Хёрсом, С. Муром и У.Стейном (США), разработавшими метод автоматического анализа аминокислот, вошедший в практику биохимических лабораторий. Тот же фермент — рибонуклеазу, полученную из разных источников, изучали К. Анфинсен (США), Ф. Эгами (Япония) и др. Последовательность расположения аминокислот в ряде протеолитических ферментовустановили Ф. Шорм и Б. Кейль с сотрудниками (Чехословакия), Б. Хартли (Великобритания) и др. Большое достижение Б. 60-х гг. 20 в. — химический синтез гормонов — адренокортикотропного гормона, молекула которого содержит 23 аминокислоты (в природном гормоне 39 аминокислот), и инсулина, молекула которого состоит из 51 аминокислоты, фермента рибонуклеазы (124 аминокислоты).
В СССР над проблемами структуры и синтеза биологически активных веществ работают в Институте химии природных соединений (директор М. М. Шемякин), Институте биологической и медицинской химии (директор В. Н. Орехович) и других институтах и на кафедрах вузов.
С большим успехом использовали английские учёные М. Перуц, Дж. Кендрю и их сотрудники рентгеноструктурный анализ для выяснения строения миоглобина и гемоглобина. В 1956—67 полностью была определена структура лизоцима английским биохимиком Д. Филлипсом и др. Не менее значительны успехи, достигнутые в анализе сложных белков, нуклеопротеидов, нуклеиновых кислот и нуклеотидов. Триумфом Б., молекулярной биологии и генетики явились исследования, показавшие роль нуклеиновых кислот в биосинтезе белков и установившие предопределяющее влияние нуклеиновых кислот на строение и свойства синтезируемых в клетке белков. Этими работами были выяснены биохимические основы передачи признаков по наследству от поколения к поколению. Трудно переоценить также значение исследований, определивших последовательность нуклеотидов в составе транспортных рибонуклеиновых кислоти разработку методов органического синтеза полинуклеотидов. Особенно плодотворно в названных областях работают И. Бьюкенен, Э. Чаргафф, И. Дэвидсон, Д. Дейвис, А. Корнберг, С. Очоа, Дж. Уотсон, М. Уилкинс и др. (США), Ф. Крик, Ф. Сангер (Великобритания), Ф. Жакоб, Ж. Моно (Франция), А. Н. Белозерский, А. С. Спирин, В. А. Энгельгардт, А. А. Баев (СССР) и многие др.
Научные учреждения, общества и периодические издания. Запросы к Б. со стороны смежных научных дисциплин — медицины со всеми её разветвлениями, сельского хозяйства (растениеводства, животноводства), пищевой промышленности, теоретической и прикладной биологии, почвоведения, гидробиологии и океанологии, становятся всё шире. Каждое из направлений Б. располагает в СССР и за рубежом сетью специализированных институтов и лабораторий. Научная работа по Б. в СССР проводится в центральных научно-исследовательских институтах, находящихся в системе: АН СССР — Институт биохимии им. А. Н. Баха, Институт эволюционной физиологии и биохимии, Институт физиологии растений, Институт молекулярной биологии, Институт химии природных соединений; республиканских академий — институты биохимии УССР, Армянской ССР, Узбекской ССР, Литовской ССР; отраслевых академий: Институт биологической и медицинской химии АМН СССР, отдел биохимии в Институте экспериментальной медицины АМН СССР, Институт экспериментальной эндокринологии и химии гормонов АМН СССР, Институт питания АМН СССР; в институтах ВАСХНИЛ и ряда министерств (здравоохранения, сельского хозяйства, пищевой промышленности и др.). Работы по Б. представлены в лаборатории биоорганической химии МГУ, на многочисленных кафедрах Б. вузов. Проблемами Б. занимаются в центральных и отраслевых институтах, работающих в области ботаники, физиологии, патологии, в институтах экспериментальной и клинической медицины, институтах пищевой промышленности, институтах физкультуры и многих др. Основных специалистов-биохимиков за рубежом и в СССР готовят университеты, их химические и биологические факультеты, имеющие в своём составе специальные кафедры. Биохимиков более узкого профиля готовят в медицинских, технологических, с.-х. и других вузах.
В большинстве стран существуют научные биохимические общества, объединённые в Европейскую федерацию биохимиков (FEBS — Federation of European Biochemical Societies) и в Международный биохимический союз (IUB— International Union of Biochemistry). Эти организации собирают симпозиумы, конференции, а также конгрессы — ежегодные по Европейской федерации (первый проходил в 1964) и раз в 3 года по Международному биохимическому союзу (первый состоялся в 1949; особенно популярными и многолюдными конгрессы стали начиная с 5-го, состоявшегося в 1961 в Москве). В СССР Всесоюзное биохимическое общество с многочисленными республиканскими и городскими отделениями было организовано в 1958. Оно объединяет около 6,5 тыс. членов, фактически число биохимиков в СССР значительно больше.