Большая Советская Энциклопедия (ДИ)
Шрифт:
Отвлекаясь от механического или геометрического содержания приведённых задач и выделяя общий для них приём решения, приходят к понятию производной. Производной функции у = f (x)
С помощью производной определяется, кроме уже рассмотренных, ряд важных понятий естествознания. Например, сила тока определяется как предел
где Dq — положительный электрический заряд, переносимый через сечение цепи за время Dt; скорость химической реакции определяется как предел
где DQ — изменение количества вещества за время Dt; вообще, производная по времени есть мера скорости процесса, применимая к самым разнообразным физическим величинам.
Производную функции y = f (x) обозначают f' (x), у', dy/dx, df/dx или Df (х). Если функция y = f (x) имеет в точке х производную, то она определена как в самой точке x, так и в некоторой окрестности этой точки и непрерывна в точке x . Обратное заключение было бы, однако, неверным. Например, непрерывная в каждой точке функция
графиком которой служат биссектрисы первого и второго координатных углов, при х = 0 не имеет производной, т.к. отношение Dу/Dх не имеет предела при Dx ® 0: если Dх > 0, это отношение равно +1, а если Dx < 0, то оно равно -1. Более того, существуют непрерывные функции, не имеющие производной ни в одной точке (см. Непрерывная функция).
Операцию нахождения производной называют дифференцированием. На классе функций, имеющих производную, эта операция линейна.
Таблица формул и правил дифференцирования
(C)' = 0; (xn)' = nxn-1;
(aх)' = ax ln a и (ex)' = ex;
(logax)' = 1/x ln a и (ln x)' = 1/x;
(sin x)' = cos x; (cos x)' = – sin x;
(tg x)' = 1/cos2x; (ctg x)' = – 1/sin2x;
(arc tg x)' = 1/(1 + x2).
[f (x) ± g (x)]' = f '(x) ± g'(x);
[Cf (x)]' = Cf '(x);
[f (x) g (x)]' = f''(x) g (x) + f (x) g '(x);
если y = f (u) и u = j(x), т. е. y = f [j(x)], то dy/dx = (dy/du)x(du/dx) = fc (u)jc(x).
Здесь С, n и a — постоянные, a > 0. Эта таблица, в частности, показывает, что производная от всякой элементарной функции есть снова элементарная функция.
Если производная f' (x), в свою очередь, имеет производную, то её называют второй производной функции у = f (x) и обозначают
у", f" (x), d2y/dx2, d2f/dx2 или D2f (x).
Для прямолинейно движущейся точки вторая производная характеризует её ускорение.
Аналогично определяются и производные более высокого (целого) порядка. Производная порядка n обозначается
yn, fn (x), dny/dxn, dnf/dxn или Dnf (x).
Дифференциал. Функция у = f (x), область определения которой содержит некоторую окрестность точки х, называется дифференцируемой в точке x, если её приращение
Dy = f (x + Dx) - f (x)
можно записать в форме
Dу = АDх + aDх,