Большая Советская Энциклопедия (ФА)
Шрифт:
Сама симметрия появляется и исчезает скачком. Однако величина, характеризующая асимметрию (параметр порядка), может изменяться непрерывно. При Ф. п. II рода параметр порядка равен нулю выше точки перехода и в самой точке перехода. Подобным образом ведёт себя, например, магнитный момент ферромагнетика, электрическая поляризация сегнетоэлектрика, плотность сверхтекучей компоненты в жидком 4 He, вероятность обнаружения атома А в соответствующем узле кристаллической решётки двухкомпонентного сплава и т.д.
Для Ф. п. II рода характерно отсутствие скачков плотности, концентрации, теплоты перехода. Но точно такая же картина наблюдается и в критической точке на кривой Ф. п. I рода (см. Критические явления ). Сходство оказывается очень глубоким. Вблизи критической точки состояние вещества можно характеризовать величиной, играющей роль параметра порядка. Например, в случае критической точки на кривой равновесия жидкость – пар это – отклонение плотности от
Современные достижения теории Ф. п. II рода и критических явлений основаны на гипотезе подобия. Предполагается, что если принять R за единицу измерения длины, а среднюю величину параметра порядка ячейки с ребром R – за единицу измерения параметра порядка, то вся картина флуктуаций не будет зависеть ни от близости к точке перехода, ни от конкретного вещества. Все термодинамические величины являются степенными функциями R. Показатели степеней называют критическими размерностями (индексами). Они не зависят от конкретного вещества и определяются лишь характером параметра порядка. Например, размерности в точке Кюри изотропного материала, параметром порядка которого является вектор намагниченности, отличаются от размерностей в критической точке жидкость – пар или в точке Кюри одноосного магнетика, где параметр порядка – скалярная величина.
Вблизи точки перехода уравнение состояния имеет характерный вид закона соответственных состояний . Например, вблизи критической точки жидкость – пар отношение
Достигнуты большие успехи в теоретическом вычислении критических размерностей и уравнений состояния в хорошем согласии с экспериментальными данными. Приближенные значения критических размерностей приведены в таблице.
Таблица критических размерностей термодинамических и кинетических величин
Величина | Т– Тk | Теплоемкость | Восприимчивость* | Магнитное поле | Магнитный момент | Ширина линии рэлеевского рассеяния |
Размерность | – 3 /2 | 3 /16 | 2 | – 5 /2 | – 1 /2 | – 3 /2 |
* Изменение плотности с давлением, намагниченности с напряжённостью магнитного поля и др. Tk – критическая температура.
Дальнейшее развитие теории Ф. п. II рода связано с применением методов квантовой теории поля, в особенности метода ренормализационной группы. Этот метод позволяет, в принципе, найти критические индексы с любой требуемой точностью.
Деление Ф. п. на два рода несколько условно, т.к. бывают Ф. п. I рода с малыми скачками теплоёмкости и др. величин и малыми теплотами перехода при сильно развитых флуктуациях. Ф. п. – коллективное явление, происходящее при строго определённых значениях температуры и др. величин только в системе, имеющей в пределе сколь угодно большое число частиц.
Лит.: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М., Курс общей физики. Механика и молекулярная физика, 2 изд., М., 1969; Браут Р., Фазовые переходы, пер. с англ., М., 1967; Фишер М., Природа критического состояния, пер. с англ., М., 1968; Стенли Г., Фазовые переходы и критические явления, пер. с англ., М., 1973; Анисимов М. А., Исследования критических явлений в жидкостях, «Успехи физических наук», 1974, т. 114, в. 2; Паташинский А. З., Покровский В. Л., Флуктуационная теория фазовых переходов, М., 1975; Квантовая теория поля и физика фазовых переходов, пер. с англ., М., 1975 (Новости фундаментальной физики, вып. 6); Вильсон К., Когут Дж., Ренормализационная группа и e-разложение, пер, с англ., М., 1975 (Новости фундаментальной физики, в. 5).
В. Л. Покровский.
Фазовый портрет
Фа'зовый портре'т, совокупность фазовых траекторий, характеризующая состояния и движения динамич. системы (см. Фазовой плоскости метод ).
Фазоинвертор
Фазоинве'ртор, электрическое устройство, преобразующее входное напряжение в два напряжения, сдвинутые по фазе на 180°. Простейший Ф. – электрический трансформатор с симметричной вторичной обмоткой, имеющей отвод от средней точки. Часто в качестве Ф. используют колебательный контур , у которого имеется отвод от средних точек в индуктивной или ёмкостной ветвях (от средней точки катушки индуктивности или общей точки двух последовательно включенных конденсаторов). В радиотехнических устройствах получили распространение ламповые, а позднее – транзисторные Ф. с разделённой нагрузкой (рис. ). В таких Ф. выходные сигналы на аноде (коллекторе) и катоде (эмиттере) имеют разную полярность (сдвинуты по фазе на 180°). Существуют и др. Ф., например собранные на лампе (двойном триоде) по схеме с общим катодом или с общей сеткой, а также на т. н. составных транзисторах. Ф. используют также в измерительной аппаратуре, устройствах вычислительной техники и др.
Принципиальная схема фазоинвертора с разделенной нагрузкой: Т — транзистор; Rб , Rк , Rэ — резисторы в цепях смещения, коллектора и эмиттера; С1 , С2 — разделительные конденсаторы; Ек — источник питания.
Фазокомпенсатор
Фазокомпенса'тор, источник реактивной мощности , включаемый в определённых узлах электрической сети либо непосредственно на зажимах нагрузки и служащий для компенсации сдвига фаз между напряжением и током. Применение Ф. позволяет регулировать (поддерживать) напряжение в сети, снижать потери электрической энергии и увеличивать пропускную способность электрических коммуникаций.
Различают регулируемые и нерегулируемые Ф. Регулируемый Ф. позволяет менять характер реактивной мощности в сети (ёмкостный или индуктивный), что обеспечивает возможность поддержания заданного режима работы сети при изменении влияющих на него условий. Регулируемые Ф. бывают вращающиеся и статические. В качестве вращающихся регулируемых Ф. используют компенсаторы синхронные . Статические регулируемые Ф. выполняют на конденсаторах электрических . Регулирующими элементами в таких Ф. служат управлямые выпрямители тока , регулируемые реакторы электрические или трансформаторы электрические. Нерегулируемые Ф. – обычно статические, конденсаторного типа. В ряде случаев Ф. дополнительно выполняют роль устройств, симметрирующих нагрузку. В сетях с существенно несинусоидальными нагрузками Ф. используют в качестве фильтров гармонических колебаний. Статические Ф. находят применение в преобразовательных устройствах с искусственной коммутацией. Выбор типа Ф. определяется технико-экономическими показателями, учитывающими характер нагрузок сети, скорость и диапазон их изменений, режим работы сети и т.д. См. также Компенсирующие устройства .