Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ГИ)
Шрифт:

В трудах Г. проявились замечательно точная логика, тщательность в отделке результатов. В работах Г. до сих пор не обнаружено ни одной ошибки, все его идеи сохранились в современной науке.

Соч.: The collected works, v. 1—2, N. Y. — L., 1928; The scientific papers, v. 1—2, N. Y., 1906; в рус. пер. — Основные принципы статистической механики, М. — Л., 1946; Термодинамические работы, М., 1950.

Лит.: Семенченко В. К., Д. В. Гиббс и его основные работы по термодинамике и статистической механике (К 50-летию со дня смерти), «Успехи химии», 1953, т. 22, в. 10; Франкфурт У. И., Френк А. М., Джозайя Виллард Гиббс, М., 1964.

О. В. Кузнецова.

Дж. У. Гиббс.

Гиббса

правило фаз

Ги'ббса пра'вило фаз, основной закон гетерогенных равновесий, согласно которому в гетерогенной (макроскопически неоднородной) физико-химической системе, находящейся в устойчивом термодинамическом равновесии, число фаз не может превышать числа компонентов, увеличенного на 2 (см. Фаз правило); установлено Дж. У. Гиббсом в 1873—76.

Гиббса распределение

Ги'ббса распределе'ние, фундаментальный закон статистической физики, определяющий вероятность данного микроскопического состояния системы, т. е. вероятность того, что координаты и импульсы частиц системы имеют определённые значения.

Для систем, находящихся в тепловом равновесии с окружающей средой, в которой поддерживается постоянная температура (с термостатом), справедливо каноническое Г. р., установленное Дж. У. Гиббсом в 1901 для классической статистики. Согласно этому распределению, вероятность определённого микроскопического состояния пропорциональна функции распределения f (qi, pi), зависящей от координат qi и импульсов pi частиц системы:

где H (qi, pi) — функция Гамильтона системы, т. е. её полная энергия, выраженная через координаты и импульсы частиц, kБольцмана постоянная, Т — абсолютная температура; постоянная А не зависит от qi и pi и определяется из условия нормировки (сумма вероятностей пребывания системы во всех возможных состояниях должна равняться единице). Т. о., вероятность микросостояния определяется отношением энергии системы к величине kT (которая является мерой интенсивности теплового движения молекул) и не зависит от конкретных значений координат и импульсов частиц, реализующих данное значение энергии.

В квантовой статистике вероятность wn данного микроскопического состояния определяется значением энергетического уровня системы Eп.

Для идеального газа, т. е. газа. в котором энергией взаимодействия частиц можно пренебречь, каноническое Г. р. переходит в Больцмана распределение, определяющее вероятность того, что координата и импульс (энергия) отдельной частицы имеют данные значения (см. Больцмана статистика).

Если система изолирована, то её энергия постоянна; в этом случае справедливо микроканоническое Г. р., согласно которому все микроскопические состояния изолированной системы равновероятны. Микроканоническое Г. р. лежит в основе Г. р. канонического.

Лит. см. при статье Статистическая физика.

Г. Я. Мякишев.

Гиббса термодинамический потенциал

Ги'ббса термодинами'ческий потенциа'л, то же, что Гиббсова энергия; см. также Потенциалы термодинамические.

Гиббсит

Гиббси'т (по имени американского минералога Дж. Гиббса, G. Gibbs, 1776—1833),

минерал; то же, что гидраргиллит.

Гиббсова энергия

Ги'ббсова эне'ргия, энергия Гиббса, изобарный потенциал, одна из характеристических функций термодинамической системы, обозначается G, определяется через энтальпию H, энтропию S и температуру Т равенством

G = H — TS. (1)

Г. э. является потенциалом термодинамическим. В изотермическом равновесном процессе, происходящем при постоянном давлении, убыль Г. э. данной системы равна полной работе, производимой системой в этом процессе, за вычетом работы против внешнего давления (т. е. равна максимальной полезной работе). Г. э. выражается обычно в кдж/моль или в ккал/моль. С помощью Г. э. и её производных могут быть в простой форме выражены др. термодинамические функции и свойства системы (внутренняя энергия, энтальпия, химический потенциал и др.) в условиях постоянства температуры и давления. При этих условиях любой термодинамический процесс может протекать без затраты работы извне только в том направлении, которое отвечает уменьшению G (dG< 0). Пределом протекания его без затраты работы, т. е. условием равновесия, служит достижение минимального значения G (dG = 0, d2G > 0). Г. э. широко используется при рассмотрении различных термодинамических процессов, проводимых при постоянных температуре и давлении. Через Г. э. определяется работа обратимого намагничивания магнетика и поляризации диэлектрика в этих условиях. Знание Г. э. важно для термодинамического рассмотрения фазовых переходов. Константа равновесия Ка химической реакции при любой температуре Т определяется через стандартное изменение Г. э. DG° соотношением

Широко используется Г. э.

 образования химического соединения, равная изменению Г. э. в реакции образования данного соединения (или простого вещества) из стандартного состояния соответствующих простых веществ. Для любой химической реакции
 равна алгебраической сумме произведений
 веществ, участвующих в реакции, на их коэффициенты в уравнении реакции. Для 298,15 К
 известны уже для нескольких тысяч веществ, что даёт возможность расчётным путём определять соответствующие значения
 и Ка для большого числа реакций.

Наряду с уравнением (1) Г. э. может быть определена также через внутреннюю энергию U, гельмгольцеву энергию А и произведение объёма V на давление р на основе равенств

G = U — TS + pV, (3)

G = A + pV, (4)

Характеристическую функцию Г. э. разные авторы долгое время называли по-разному: свободной энергией, свободной энергией при постоянном давлении, термодинамическим потенциалом, термодинамическим потенциалом Гиббса, изобарно-изотермическим потенциалом, свободной энтальпией и др.; для обозначения этой функции использовались различные символы (Z, F, Ф). Принятые здесь термин «Г. э.» и символ G отвечают решению 18-го конгресса Международного союза чистой и прикладной химии 1961.

Поделиться:
Популярные книги

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7

Повелитель механического легиона. Том V

Лисицин Евгений
5. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том V

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Последний Паладин. Том 3

Саваровский Роман
3. Путь Паладина
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 3

Имя нам Легион. Том 10

Дорничев Дмитрий
10. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 10

Игра Кота 3

Прокофьев Роман Юрьевич
3. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
8.03
рейтинг книги
Игра Кота 3

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Искатель. Второй пояс

Игнатов Михаил Павлович
7. Путь
Фантастика:
фэнтези
боевая фантастика
6.11
рейтинг книги
Искатель. Второй пояс

Имя нам Легион. Том 1

Дорничев Дмитрий
1. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 1