Большая Советская Энциклопедия (ИЗ)
Шрифт:
В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.
Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка q, наибольшим размером апертуры L и излучаемой длиной волны l определяется формулами:
для
если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9 ). С — постоянные, зависящие от распределения амплитуды токов по апертуре.
Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10 ), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.
Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна представляет собой металлическое зеркало 1 , чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11 ). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.
Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны — передающую А и приёмную В — в начале и в конце линии радиосвязи, то генератор, питающий антенну А , переключенный в приёмную антенну В , создаёт в приёмном устройстве, переключенном в антенну А , такой же ток, какой, будучи включенным в антенну А , он создаёт в приёмнике, включенном в антенну В . Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.
Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l , длиной волны l и углом y между направлением v прихода волны и диполем. Существен также угол j между направлением вектора электрической волны и диполем (рис. 12 ). Наилучшие условия приёма, при j = 0. При j = p/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 < j < p/2, то очевидно, что энергия, извлекаемая приёмной антенной из поля ~ (Ecos j)2 . Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной
Шумы антенны. Приёмная антенна всегда находится в таких условиях, когда на неё, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея — Джинса законом излучения создают электромагнитное излучение. Шумы возникают и за счёт джоулевых потерь в проводниках и диэлектриках подводящих устройств.
Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой TA . Мощность Рш внешних шумов на входе антенны в полосе частот Dn приёмника равна:
Рш =k TA Dn
(k — Больцмана постоянная ). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140—250 К; у остронаправленных антенн она составляет обычно 50—80 К, а специальными мерами её можно снизить до 15—20 К.
О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна .
Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. — Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. — Л., 1950.
Под редакцией Л. Д. Бахража.
Рис. 11. Схема зеркальной антенны: 1 — параболический отражатель; 2 — волновод, соединяющий двухщелевой излучатель 3 с генератором; 4 — образуемый излучателем сферический фронт волны; 5 — плоский фронт волны после отражения от зеркала.
Рис. 1. Виток катушки индуктивности.
Рис. 8. Сечение диаграммы направленности антенны плоскостью.
Рис. 3. Структура электрического Е и магнитного H полей вблизи диполя: пунктир — силовые линии электрического поля; тонкие линии — силовые линии магнитного поля; О — точка наблюдения.
Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1 /8 периода Т колебаний тока.
Рис. 12 к ст. Излучение и приём радиоволн.
Рис. 2. Электрический диполь.
Рис. 10. Cxeмa рупорного излучателя. Стрелками показаны силовые линии электрического поля; точки - силовые линии магнитного поля, перпендикулярные плоскости рисунка, выходящие из его плоскости (крестики — уходящие за плоскость).
Рис. 7. Сопоставление электрического диполя (а), магнитного (6) и щелевого (в, г) излучателей; 1 — проводник с током; 2 — стержень из материала с высокой магнитной проницаемостью; 3 — металлический экран, в котором прорезана щель; 4 — проводники, идущие от генератора высокочастотных электрических колебаний; 5 — силовые линии электрического поля; 6 — силовые линии магнитного поля.