Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (КЕ)
Шрифт:

Соч.: A new relation between electricity and light: dielectrified media birefringent, «Philosophical Magazine», 1875, v. 50, p. 337—48, 446—58; On rotation of ihe plane of polarization by reflection from the pole of a magnet, там же, 1877, v. 3, p. 321 — 43.

Керра эффект

Ке'рра эффе'кт, Кeppa явление, возникновение двойного лучепреломления в оптически изотропных веществах, например жидкостях и газах, под воздействием однородного электрического поля. Открыт Дж. Керром в 1875. В результате К. э. газ или жидкость в электрическом поле приобретает свойства одноосного кристалла (см. Кристаллооптика), оптическая ось которого направлена вдоль поля.

Для наблюдения К. э. монохроматический свет пропускают через поляризатор П (например, призму Николя)

и направляют в плоский конденсатор, заполненный изотропным веществом (ячейка Керра, см. рис.). Поляризатор преобразует естественно поляризованный свет в линейно поляризованный (см. Поляризация света). Если к обкладкам конденсатора не приложено напряжение, то поляризация света, проходящего через вещество, не изменяется и свет полностью гасится второй призмой Николя А, повёрнутой на 90° по отношению к первой (анализатором). Если к обкладкам приложено напряжение, то линейно поляризованная световая волна в веществе распадается на две волны, поляризованные вдоль поля Ен (необыкновенная волна) и под прямым углом к полю Е0 (обыкновенная волна), которые распространяются с разными скоростями. Из-за разной скорости распространения фазы колебаний электрического вектора у необыкновенной волны Ен и обыкновенной Е0 волн по выходе из ячейки не совпадают, в результате чего результирующая световая волна оказывается эллиптически поляризованной и частично проходит через анализатор. Если между ячейкой Керра и анализатором А поставить компенсатор К, преобразующий эллиптически поляризованный свет в линейно поляризованный, то поворотом компенсатора можно снова добиться полного гашения света анализатором. Зная угол поворота компенсатора, можно вычислить величину двойного лучепреломления: Dn = nнno, где nн и no — показатели преломления для необыкновенной и обыкновенной волн.

Величина двойного лучепреломления прямо пропорциональна квадрату напряжённости электрического поля: Dn= nkE2 (закон Керра). Здесь n — показатель преломления вещества в отсутствии поля, k — постоянная Керра. Постоянной Керра называют также величину В = nkl (lдлина световой волны). Постоянные Керра k и В могут быть положительными или отрицательными. Их величины зависят от агрегатного состояния вещества, температуры, а также от структуры молекул вещества. Для газов k ~ 10– 15 СГСЕ. Для жидкостей k ~ 10– 12 СГСЕ. Ещё большими значениями постоянных Керра характеризуются растворы жёстких макромолекули коллоидные растворы.

Объяснение К. э. было дано П. Ланжевеном (1910) и М. Борном (1918). Электрическое поле стремится повернуть молекулы вещества так, чтобы их электрический дипольный момент был направлен вдоль поля Е. Электрическое поле не только ориентирует молекулы, но и создаёт в молекулах дополнительный дипольный момент. Это существенно, например, для инертных газов, атомы которых в отсутствии поля не обладают дипольным моментом. В результате действия поля в веществе возникает определённая ориентация частиц. При этом условия распространения в веществе световых волн, поляризованных вдоль и поперёк поля, оказываются различными (см. Двойное лучепреломление). Тепловое движение препятствует ориентации атомов и молекул, поэтому постоянная Керра убывает с ростом температуры. Измеряя постоянные Керра, можно вычислить эллипсоид оптической поляризуемости, что позволяет получить важную информацию о структуре молекул.

В переменном электрическом поле К. э. зависит от скорости переориентации молекул при изменении знака поля. Эта скорость для низкомолекулярных жидкостей очень велика (времена изменения ориентации < 109сек).

Поэтому при частоте электрического поля < 109гц интенсивность света, проходящего через анализатор, будет следовать за колебаниями электрического поля (с удвоенной частотой) практически без запаздывания. Таким образом, ячейка Керра может работать как модулятор светового потока, что имеет важное прикладное значение (см. Керра ячейка).

Помимо описанного электрооптического К. э. в 1876 Керром было обнаружено магнитооптическое явление (магнитооптический эффект Керра) при наблюдении отражения света от полированной поверхности полюса магнита. Магнитооптический К. э. состоит в том, что плоско поляризованный свет, отражаясь от намагниченного ферромагнетика, становится эллиптически поляризованным; при этом большая ось эллипса поляризации поворачивается на некоторый угол по отношению к плоскости поляризации падающего света. Падающий свет при наблюдении магнитооптического К. э. Должен быть поляризован в плоскости падения либо нормально к ней, так как при всякой другой поляризации явление осложняется появлением эллиптичности поляризации, вызванной отражением от металлической (ненамагниченной) поверхности (см. Металлооптика).

Появление эллиптичности поляризации и вращение плоскости поляризациинаблюдается также при прохождении света через тонкие намагниченные ферромагнитные плёнки (см. Фарадея эффект). Оба магнитооптических явления имеют сходную природу и объясняются квантовой теорией. Магнитооптический К. э. нашёл широкое применение при изучении доменной структуры ферромагнетиков (см. Домены,Магнитооптика).

Лит.: Волькенштейн М. В., Строение и физические свойства молекул, М., 1955; его же, Молекулярная оптика, М. — Л., 1951; Соколов А. В., О магнетооптических явлениях в ферромагнетиках, «Успехи физических наук», 1953, т. 50, в. 2, с. 161; его же, Оптические свойства металлов, М., 1961.

Ю. Е. Светлов.

Схема установки для наблюдения эффекта Керра; стрелки показывают направление электрического поля Е.

Керра ячейка

Ке'рра яче'йка, электрооптическое устройство, основанное на эффекте Керра, применяемое в качестве оптического затвора или модулятора света. Является наиболее быстродействующим устройством для управления интенсивностью светового потока (скорость срабатывания 10– 9—10– 12сек). К. я. состоит из сосуда с прозрачными окнами, заполненного жидкостью, в которой имеет место эффект Кера. В жидкость погружены два электрода, образующие плоский конденсатор. Между электродами проходит световой луч. Сосуд помещается между поляризатором и анализатором света, находящимися в скрещенном положении. Направление электрического поля Е в конденсаторе составляет угол 45° с направлениями электрического поля поляризованных световых колебаний (см. Поляризация света). В отсутствии электрического поля анализатор не пропускает света. При включении электрического поля в жидкости возникает двойное лучепреломление. В результате этого К. я. становится прозрачной для проходящего света (см. Керра эффект). В зависимости от заполняющей жидкости (применяются жидкости с большой постоянной Керра, например нитробензол и размеров ячейки максимальная прозрачность достигается при напряжении на электродах V от 3 до 30 кв.

К. я. ранее использовалась в кинематографии для записи звука на звуковую дорожку (тагефон), однако в дальнейшем была вытеснена другими устройствами. Применяется в скоростной фото- и киносъёмках, в оптической телефонии, в оптической локации, геодезических дальномерных устройствах и в схемах управления оптических квантовых генераторов (см. Лазер). Быстродействие К. я. позволяет использовать ее и для измерения скорости света в лабораторных условиях: свет, пройдя К. я., отражается от зеркала и снова проходит ячейку в обратном направлении с опозданием, обусловленным длиной пути от ячейки до зеркала и обратно. Этот метод имеет историческое значение и эффектен как лекционная демонстрация. В ряде применений жидкостная К. я. заменяется кристаллической ячейкой, действие которой основано на Поккельса эффекте.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Имперец. Том 4

Романов Михаил Яковлевич
3. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 4

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Приручитель женщин-монстров. Том 2

Дорничев Дмитрий
2. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 2

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Возрождение Феникса. Том 1

Володин Григорий Григорьевич
1. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.79
рейтинг книги
Возрождение Феникса. Том 1

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

В теле пацана

Павлов Игорь Васильевич
1. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана